With the use of electric force formula, the direction and magnitude of the net force exerted on the point charge q3 are 9.9 x
N and 66 degrees
ELECTRIC FORCE (F)
F = 
Where K = 9 x
N
/
The distance between
and
can be calculated by using Pythagoras theorem.
d = 
d = 46.7 cm = 0.467 m
For force
, substitute all the parameters into the formula above
= (9 x
x 3 x 1)/
= 2.7 x
/0.218
= 1.24 x
N
For force
, substitute all the parameters into the formula above
= (9 x
x 3 x 4)/
= 1.08 x
/0.1089
= 9.92 x
N
For force
, substitute all the parameters into the formula above
= (9 x
x 3 x 2)/
= 5.4 x
/0.1089
= 4.96 x
N
Summation of forces on Y component will be
=
-
Sin 45
= 9.92 x
- 1.24 x
Sin 45
= 9.04 x
N
Summation of forces on X component will be
=
-
Cos 45
= 4.96 x
- 1.24 x
Sin 45
= 4.08 x
N
Net Force = 
Net force = 
Net force = 9.9 x
N
The direction will be
Tan ∅ =
/
Tan ∅ = 9.04 x
/ 4.08 x 
Tan ∅ = 2.216
∅ =
(2.216)
∅ = 65.7 degrees
Therefore, the direction and magnitude of the net force exerted on the point charge q3 are 9.9 x
N and 66 degrees approximately.
Learn more about electric Force here: brainly.com/question/4053816
Answer:
Explanation:
Given
mass of car 
Initial velocity of car
towards east
Time taken to stop 
Force exerted 
change in momentum is given by impulse imparted to the car



negative Sign indicates that impulse is imparted opposite to the direction of motion
magnitude of momentum 
It is 92.96 millions miles away
Hope that helped :)
It was about 9:30 p.m. sorry if the answer is wrong
Answer:
Visible light
Explanation:
Electromagnetic spectrum is the classification of the electromagnetic waves according to their frequency/wavelength. In order from the shortest to the longest wavelength, we have
Gamma rays
X-rays
Ultraviolet
Visible light
Infrared
Microwaves
Radio waves
All these waves are invisible to human eye, except for the part referred as 'visible light'. The electromagnetic waves of this part of the spectrum are visible to human eye, and they appear as a different color depending on their wavelength. In particular, we have:
Violet: 380-450 nm
Blue: 450-495 nm
Green: 495-570 nm
Yellow: 570-590 nm
Orange: 590-620 nm
Red: 620-750 nm