Answer:
The tube should be held vertically and perpendicular to the ground.
Explanation:
Answer: The tube should be held vertically and perpendicular to the ground. The reason is as follows:
Reasoning:
The power lines are parallel to the ground hence, their electric field will be perpendicular to the ground and equipotential surface will be cylindrical.
Hence, if you will put fluorescent tube parallel to the ground then both the ends of the tube will lie on the same equipotential surface and the potential difference will be zero.
So, to maximize the potential the ends of the tube must be on different equipotential surfaces. The surface which is near to the power line has high potential value and the surface which is farther from the line has lower potential value.
hence, to maximize the potential difference, the tube must be placed perpendicular to the ground.
Answer:
The heating element of the heater is made up of alloy which has very high resistance so when current flows through the heating element, it becomes too hot and glows red. But the resistance of cord which is usually of copper or aluminum is very low so it does not glow.
(vx)f=(vx)i + a(t)
since it starts from rest the initial velocity is zero so you can do some algebra and get your (a).
<span>The correct answer is 45 degrees. 360 degrees is 24 hours, because it takes a whole day for the earth to turn in one whole circle. So, to find how many degrees the stars seem to move per hour, simply divide the total number of degrees by the total number of hours in a day: 360/24 = 15. Since the question is asking how much the stars appear to move in 3 hours, now multiply the number of degrees per hour times 3: 15 x 3 = 45. </span>