Answer:
This represents radiation in ultra-violet region .
Explanation:
Energy of the orbit where n = 3 is given as follows

= -1.511 eV
Energy of the orbit where n = 1 is given as follows

= 13.6 eV
Difference of [tex]E_3 and [tex]E_1 = - 1.511+ 13.6
= 12.089 eV.
The wavelength of light having this energy in nm is given by the expression as follows
Wavelength in nm = 1244 / energy in eV
= 1244 / 12.089
= 102.90 nm
This represents radiation in ultra-violet region .
Answer:
N = 2000 drops approx with 1 cm diameter each
Explanation:
Let the diameter of one drop is 1 cm
so volume of one drop is given by

now we have


now in 1L of liquid let say N drops are there
so we have

now we have


so it will have approx 2000 drops in it with diameter 1 cm each drop
You will use the height of the bridge from the ground.
Solution:
Formula to be used is y=Viy(t)+g(t^2)/2
Where:
Vi=initial velocity which is 0 m/s
y=10 m
Gravitational acceleration or g =9.8m/s^2
T= time you need
Substitute all the given to the formula
10m=(0m/s)(t)+(9.8m/s^2)(t^2)/2
10mx2=9.8m/s^2(t^2)
Now isolate the variable you want to find which is T or time
10mx2/9.8m/s^2=t^2
20m/9.8m/s^2=t^2
Square root of 2.04= square root of t^2
T=1.43 secs
The answer is 1.43 seconds
Answer:
The heat energy required is, E = 2200 J
Explanation:
Given,
The mass of paraffin, m = 2 Kg
The energy required to raise the temperature of the paraffin by 200° C = 44000 J
Then the heat energy required to raise the temperature of the paraffin by 10° C is given by,
Since 44000 J raises temperature by 200° C, then
E = 44000 J / 20
= 2200 J
Hence, the energy required to raise the temperature of the paraffin by 10° C is, E = 2200 J
PV = 400 x 0.08 = 32 J
Hope this helps