<em>60km</em><em>/</em><em>hr</em><em>.</em><em>.</em>
<em>I</em><em> </em><em>think</em><em> </em><em>so</em><em>.</em><em>.</em><em>.</em><em>.</em>
Answer:
Explanation:
The man is moving on a circular path . The reaction of wall is providing centripetal force .so
R = mv² / r
Frictional force = μR where μ is coefficient of friction
= μ x mv² / r
Frictional force = μ x mv² / r
Answer:
(E) μs(mA +mB)g
Explanation:
We can apply for mB:
∑ Fx = mB*a (→)
⇒ Ffriction = mB*a ⇒ a = Ffriction / mB = μs*N / mB
⇒ a = μs*(mB*g) / mB ⇒ a = μs*g (acceleration of the system)
Now, for mA we have
∑ Fx = mA*a (→)
F - Ffriction = mA*a ⇒ F = mA*a + Ffriction
⇒ F = mA*(μs*g) + μs*(mB*g) ⇒ F = μs*g*(mA + mB)
We must know that the friction acts only between the two blocks
Answer:

Explanation:
The standard form of the 2nd order differential equation governing the motion of mass-spring system is given by

Where m is the mass, ζ is the damping constant, and k is the spring constant.
The spring constant k can be found by




The damping constant can be found by



Finally, the mass m can be found by



Where g is approximately 32 ft/s²

Therefore, the required differential equation is


The initial position is

The initial velocity is

During a race, a sprinter accelerated 1.8 m/s 2 in 2.5 seconds. The sprint increase with this amount of acceleration by 4.5 m/s.
<h3>What is acceleration?</h3>
Acceleration is the time rate of change of velocity.
Acceleration a = velocity v / time t
1.8 = v/2.5
v = 4.5 m/s
The sprint increase with this amount of acceleration by 4.5 m/s.
Learn more about acceleration.
brainly.com/question/12550364
#SPJ1