A 72 kg athlete climbs a rope to a height of 12m. Calculate the increase in gravitational potential energy it has experienced.
Answer:
8467.2J
Explanation:
Given parameters:
Mass of the athlete = 72kg
Height of the climb = 12m
Unknown:
Increase in gravitational potential energy it has experienced = ?
Solution:
Gravitational potential energy is the energy due to the position of a body. It is mathematically expressed as;
Gravitational potential energy = m x g x h
m is the mass
g is the acceleration due to gravity = 9.8m/s²
h is the height
Insert the parameters and solve;
Gravitational potential energy = 72 x 9.8 x 12
GPE = 8467.2J
Answer:
20 mole of oxygen
Explanation:
1 mole of proprane reacts with 5 moles of oxygen so 4 time 5 equals 20
ΔG⁰ = ΔH⁰ - TΔS
ΔH⁰ = Hf,(CH₃OH) - Hf,(CO) = -238.7 + 110.5 = -128.2 kJ/mol
ΔS = S(CH₃OH) - S(CO) - 2S(H₂) = 126.8 - 197.7 - 2 x 130.6 = -332.1 J/mol.K
So
ΔG⁰ = - 128200 + 332.1 T
For the reaction to be spontaneous:
ΔG⁰ < 0
So: -128200 + 332.1 T < 0
332.1 T < 128200
T < 386.028 K
Answer:
158 L.
Explanation:
What is given?
Pressure (P) = 1 atm.
Temperature (T) = 112 °C + 273 = 385 K.
Mass of methane CH4 (g) = 80.0 g.
Molar mass of methane CH4 = 16 g/mol.
R constant = 0.0821 L*atm/mol*K.
What do we need? Volume (V).
Step-by-step solution:
To solve this problem, we have to use ideal gas law: the ideal gas law is a single equation which relates the pressure, volume, temperature, and number of moles of an ideal gas. The formula is:

Where P is pressure, V is volume, n is the number of moles, R is the constant and T is temperature.
So, let's find the number of moles that are in 80.0 g of methane using its molar mass. This conversion is:

So, in this case, n=5.
Now, let's solve for 'V' and replace the given values in the ideal gas law equation:

The volume would be 158 L.