Answer:
<em>Argon</em><em> </em><em>can</em><em> </em><em>exi</em><em>st</em><em> </em><em>freely</em><em> </em><em>in</em><em> </em><em>nature</em><em> </em><em>because</em><em> </em><em>it</em><em> </em><em>has</em><em> </em><em>a</em><em> </em><em>full</em><em> </em><em>octet</em><em> </em><em>of</em><em> </em><em>electron</em><em>s</em><em> </em><em>the</em><em> </em><em>way</em><em> </em><em>its</em><em> </em><em>found</em><em> </em><em>in</em><em> </em><em>the</em><em> </em><em>nature</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>same</em><em> </em><em>way</em><em> </em><em>its</em><em> </em><em>found</em><em> </em><em>in</em><em> </em><em>periodic </em><em>table</em><em> </em><em>of</em><em> </em><em>element </em><em>in</em><em> </em><em>vast</em><em> </em><em>amouts</em><em> </em><em>of</em><em> </em><em>stabilization</em><em>.</em>
<u>Answer:</u> The concentration of required will be 0.285 M.
<u>Explanation:</u>
To calculate the molarity of , we use the equation:
Moles of = 0.016 moles
Volume of solution = 1 L
Putting values in above equation, we get:
For the given chemical equations:
Net equation:
To calculate the equilibrium constant, K for above equation, we get:
The expression for equilibrium constant of above equation is:
As, is a solid, so its activity is taken as 1 and so for
We are given:
Putting values in above equations, we get:
Hence, the concentration of required will be 0.285 M.
The scientist observes at what rate is the concentration increasing or decreasing.