Answer:
voltage across = 1.6 V
Explanation:
given data
resistance R = 57.61 Ω
capacitance c = 13.13 mF = 13.13 ×
F
inductance L = 196.03 mH = 0.19603 H
fixed rms output Vrms = 23.86 V
to find out
voltage across circuit
solution
we know resonant frequency that is
resonant frequency = 1 / ( 2π√(LC)
put the value
resonant frequency = 1 / ( 2π√(0.19603×13.13 ×
)
resonant frequency f = 3.1370 HZ
so current will be at this resonant is
current = Vrms / R
current = 23.86 / 57.61
current = 0.4141 A
and
so voltage across will be
voltage across = current / ( 2π f C )
voltage across = 0.4141 / ( 2π ( 3.1370) 13.13 ×
)
voltage across = 1.6 V
Length of object . how much distance increase or decrease force
Answer:
0.75
Explanation:
Since the static frictional force is the maximum force applied just before sliding, our frictional force, F is 300 N.
Since F = μN where μ = coefficient of static friction and N = normal force = 400 N (which is the downward force applied against the surface).
So, μ = F/N
= 300 N/400 N
= 3/4
= 0.75
So, the coefficient of static friction μ = 0.75
Answer:
<h2>4.6 m/s²</h2>
Explanation:
The acceleration of an object given it's velocity and time taken can be found by using the formula
<h3>

</h3>
where
v is the final velocity
u is the initial velocity
t is the time taken
a is the acceleration
Since the body is from rest u = 0
From the question we have

We have the final answer as
<h3>4.6 m/s²</h3>
Hope this helps you