Answer:
AC)=(AB)2+(BC)2−−−−−−−−−−−−√=42+32−−−−−−√
⇒displacement=16+9−−−−−√=25−−√=5m
Answer:
option D
Explanation:
given,
Intensity of sound = 20 dB
distance = 15 m
intensity of sound is increased to = 50 dB
distance between the sound level = ?
Using relation

L₁ = 20 dB L₂ = 50 dB r₁ = 15 m r₂ = ?





r₂ = 0.47 m
r₂ = 47 cm
hence, the correct answer is option D
Explanation:
The net force would be upwards since the kangaroo would have to overcome gravity to jump
Answer:

Explanation:
Torque is defined as the cross product between the position vector ( the lever arm vector connecting the origin to the point of force application) and the force vector.

Due to the definition of cross product, the magnitude of the torque is given by:

Where
is the angle between the force and lever arm vectors. So, the length of the lever arm (r) is minimun when
is equal to one, solving for r:

Answer:
The gravitational force between m₁ and m₂, is approximately 1.06789 × 10⁻⁶ N
Explanation:
The details of the given masses having gravitational attractive force between them are;
m₁ = 20 kg, r₁ = 10 cm = 0.1 m, m₂ = 50 kg, and r₂ = 15 cm = 0.15 m
The gravitational force between m₁ and m₂ is given by Newton's Law of gravitation as follows;

Where;
F = The gravitational force between m₁ and m₂
G = The universal gravitational constant = 6.67430 × 10⁻¹¹ N·m²/kg²
r₂ = 0.1 m + 0.15 m = 0.25 m
Therefore, we have;

The gravitational force between m₁ and m₂, F ≈ 1.06789 × 10⁻⁶ N