Answer:
10000N
Explanation:
Given parameters:
Mass of the car = 1000kg
Acceleration = 3m/s²
g = 10m/s²
Unknown:
Weight of the car = ?
Solution:
To solve this problem we must understand that weight is the vertical gravitational force that acts on a body.
Weight = mass x acceleration due to gravity
So;
Weight = 1000 x 10 = 10000N
C light energy
The solar energy from the sun converts to chemical potential energy
Answer:
v = 5.34[m/s]
Explanation:
In order to solve this problem, we must use the theorem of work and energy conservation. This theorem tells us that the sum of the mechanical energy in the initial state plus the work on or performed by a body must be equal to the mechanical energy in the final state.
Mechanical energy is defined as the sum of energies, kinetic, potential, and elastic.
E₁ = mechanical energy at initial state [J]

In the initial state, we only have kinetic energy, potential energy is not had since the reference point is taken below 1.5[m], and the reference point is taken as potential energy equal to zero.
In the final state, you have kinetic energy and potential since the car has climbed 1.5[m] of the hill. Elastic energy is not available since there are no springs.
E₂ = mechanical energy at final state [J]

Now we can use the first statement to get the first equation:

where:
W₁₋₂ = work from the state 1 to 2.


where:
h = elevation = 1.5 [m]
g = gravity acceleration = 9.81 [m/s²]

![58 = v^{2} +29.43\\v^{2} =28.57\\v=\sqrt{28.57}\\v=5.34[m/s]](https://tex.z-dn.net/?f=58%20%3D%20v%5E%7B2%7D%20%2B29.43%5C%5Cv%5E%7B2%7D%20%3D28.57%5C%5Cv%3D%5Csqrt%7B28.57%7D%5C%5Cv%3D5.34%5Bm%2Fs%5D)
Explanation:
It is given that,
Frequency of monochromatic light, 
Separation between slits, 
(a) The condition for maxima is given by :

For third maxima,



(b) For second dark fringe, n = 2





Hence, this is the required solution.