<span>change in velocity = final velocity - initial velocity = v - u
for comet:
uc = initial velocity of comet (before impact)
vc = final velocity of comet
mc= mass of comet
uc = 40000 kmph
vc = ?
mc= 10 x 10^14 kg
for probe:
up = initial velocity of probe (before impact)
vp = final velocity of probe
mp= mass of probe
up= 37000 kmph
vp= ?
mp= 372 kg
Now,
by principle of conservation of momentum
(mc x uc) - (mp x up) = (mc x vc) + (mp x vp)
Since probe is in comet after collision, vp= vc = V
then,
(mc x uc) - (mp x up) = V (mc + mp )
V = [(mc x uc) - (mp x up)] / (mc + mp )
= ((10 × 10^14 × 40000) - (372 × 37000)) ÷ ((10 × 10^14) + 372)
= ???
then,
change in velocity of the comet = ??? - (40000) =
</span>
Hello there..
<span>Which of the following statements is TRUE?
</span>D. Light waves are electromagnetic waves and sound waves are mechanical waves.
Answer:
Converted to an amount of energy equal to 4 million tons times the speed of light squared. ejected into space in a solar wind.
Explanation:
The 4 million tons of mass is converted to the amount of energy that is equal to 4 million tons times the speed of light squared. This energy moves from the sun with the help of solar winds and received by the planets present in the solar system. This solar energy moves in the form of solar radiation because there is no medium for propagation so that's why we can say that the mass is converted into energy that moves in the form of radiation in discrete packets.
Answer
given,
L(t) = 10 - 3.5 t
mass of particle = 2 Kg
radius of the circle = 3.1 m
a) torque
τ = 
τ = 
τ = -3.5 N.m
Particle rotates clockwise as i look down the plane. Hence, its angular velocity is downward.
L decreases the angular acceleration upward. so, net torque is upward.
b) Moment of inertia of the particle
I = m R^2
I = 2 x 3.1²
I = 19.22 kg.m²
L = I ω
ω = 
ω = 
ω = 
A = 0.52 rad/s B = -0.182 rad/s²
Answer:
Average acceleration is 
Explanation:
It is given that,
Initial velocity, u = 0
Final velocity, v = 6.5 km/s = 6500 m/s
Time taken, t = 60 s
Acceleration, 

Since, 
So, 
So, the angular acceleration of the missile is
. Hence, this is the required solution.