Answer:
a) 17.33 V/m
b) 6308 m/s
Explanation:
We start by using equation of motion
s = ut + 1/2at², where
s = 1.2 cm = 0.012 m
u = 0 m/s
t = 3.8*10^-6 s, so that
0.012 = 0 * 3.8*10^-6 + 0.5 * a * (3.8*10^-6)²
0.012 = 0.5 * a * 1.444*10^-11
a = 0.012 / 7.22*10^-12
a = 1.66*10^9 m/s²
If we assume the electric field to be E, and we know that F =qE. Also, from Newton's law, we have F = ma. So that, ma = qE, and E = ma/q, where
E = electric field
m = mass of proton
a = acceleration
q = charge of proton
E = (1.67*10^-27 * 1.66*10^9) / 1.6*10^-19
E = 2.77*10^-18 / 1.6*10^-19
E = 17.33 V/m
Final speed of the proton can be gotten by using
v = u + at
v = 0 + 1.66*10^9 * 3.8*10^-6
v = 6308 m/s
Answer:
Explanation:
We shall apply Stefan's formula
E = AσT⁴
When T = 300
I₁ = Aσ x 300⁴
When T = 400K
I₂ = Aσ x 400⁴
I₂ / I₁ = 400⁴ / 300⁴
= 256 / 81
= 3.16
I₂ = 3.16 I₁ .
Incomplete question.The Complete question is here
A flat uniform circular disk (radius = 2.00 m, mass = 1.00 ✕ 102 kg) is initially stationary. The disk is free to rotate in the horizontal plane about a friction less axis perpendicular to the center of the disk. A 40.0-kg person, standing 1.25 m from the axis, begins to run on the disk in a circular path and has a tangential speed of 2.00 m/s relative to the ground.
a.) Find the resulting angular speed of the disk (in rad/s) and describe the direction of the rotation.
b.) Determine the time it takes for a spot marking the starting point to pass again beneath the runner's feet.
Answer:
(a)ω = 1 rad/s
(b)t = 2.41 s
Explanation:
(a) initial angular momentum = final angular momentum
0 = L for disk + L............... for runner
0 = Iω² - mv²r ...................they're opposite in direction
0 = (MR²/2)(ω²) - mv²r
................where is ω is angular speed which is required in part (a) of question
0 = [(1.00×10²kg)(2.00 m)² / 2](ω²) - (40.0 kg)(2.00 m/s)²(1.25 m)
0=200ω²-200
200=200ω²
ω = 1 rad/s
b.)
lets assume the "starting point" is a point marked on the disk.
The person's angular speed is
v/r = (2.00 m/s) / (1.25 m) = 1.6 rad/s
As the person and the disk are moving in opposite directions, the person will run part of a revolution and the turning disk would complete the whole revolution.
(angle) + (angle disk turns) = 2π
(1.6 rad/s)(t) + ωt = 2π
t[1.6 rad/s + 1 rad/s] = 2π
t = 2.41 s
Answer:
I think it's 2 the photo is hard to tell what they are exactly talking about.
An equation in x and y for the line tangent to the curve ()=4,()=cos() at the point where =4 is x(t)=2t+2,y(t)=t^4.
<h3>What is tangent?</h3>
In calculation, the digression line to a plane bend at a given point is the straight line that "simply contacts" the bend by then. Leibniz characterized it as the line through a couple of boundlessly close focuses on the bend. The chart of digression is intermittent, implying that it rehashes the same thing endlessly. In contrast to sine and cosine in any case, digression has asymptotes isolating every one of its periods. The space of the digression capability is all genuine numbers with the exception of at whatever point cos(θ)=0, where the digression capability is vague. Assuming they stroll in an orderly fashion, they are fundamentally following a digression way for the shape that is made inside the fencing.
Learn more about tangent, refer:
brainly.com/question/12585907
#SPJ4