Answer:
Ro = 133 [kg/m³]
Explanation:
In order to solve this problem, we must apply the definition of density, which is defined as the relationship between mass and volume.

where:
m = mass [kg]
V = volume [m³]
We will convert the units of length to meters and the mass to kilograms.
L = 15 [cm] = 0.15 [m]
t = 2 [mm] = 0.002 [m]
w = 10 [cm] = 0.1 [m]
Now we can find the volume.
![V = 0.15*0.002*0.1\\V = 0.00003 [m^{3} ]](https://tex.z-dn.net/?f=V%20%3D%200.15%2A0.002%2A0.1%5C%5CV%20%3D%200.00003%20%5Bm%5E%7B3%7D%20%5D)
And the mass m = 4 [gramm] = 0.004 [kg]
![Ro = 0.004/0.00003\\Ro = 133 [kg/m^{3}]](https://tex.z-dn.net/?f=Ro%20%3D%200.004%2F0.00003%5C%5CRo%20%3D%20133%20%5Bkg%2Fm%5E%7B3%7D%5D)
It would take about 2 thirds of a second or .66666666 repeating of a second. please give brainliest?
<h2>
Power is 11 W</h2>
Explanation:
Power = Work ÷ Time
Work = Force x Displacement
Force = 22 N
Displacement = 3 m
Time = 6 seconds
Substituting
Work = Force x Displacement
Work = 22 x 3 = 66 J
Power = Work ÷ Time
Power = 66 ÷ 6
Power = 11 W
Power is 11 W
The electrical equivalent of one horsepower is 746 watts in the International System of Units (SI), and the heat equivalent is 2,545 BTU (British Thermal Units) per hour. Another unit of power is the metric horsepower, which equals 4,500 kilogram-metres per minute (32,549 foot-pounds per minute), or 0.9863 horsepower.
Answer: Acceleration of the car at time = 10 sec is 108
and velocity of the car at time t = 10 sec is 918.34 m/s.
Explanation:
The expression used will be as follows.


= 


As, 
u = -2900 m/s

= 
= 

Also, we know that
a =
= 
= 
At t = 10 sec,
= 918.34 m/s
and, a = 108 