Answer:
electron loses energy as it transitions to lower energy level
Explanation:
An atom is capable of absorbing and releasing electrons. The atom of a substance is said to be at its GROUND LEVEL STATE when it contains the lowest energy level. However, when it absorbs or takes in energy, it moves to a high energy level called EXCITED STATE. This level is unstable and hence, subject to declination.
Due to the instability of the excited state of an atom, it tends to lose the absorbed electrons and in the process of doing so, it emits or produce light. Therefore, according to this question, light is produced by an atom when the electron loses energy as it transitions to lower energy level i.e excited state to ground level state.
Answer:
A
Explanation:
Hydrocarbons with short chain lengths are more volatile than those with longer chains. A practical example of this can be seen in the first few members of the alkane series. They are mostly gaseous in nature and this is quite a contrast to the next few members which are solid in nature.
As we move down the group, we can see that there is an increase in the number of solids. Hence, as we go down the group we can see a relative increase in order and thus we expect more stability at room temperature compared to the volatility of the shorter chain
Answer:
because weight depends on the gravity, gravity decrease s with increasing altitude,hence I have less weight
To solve this, we can use two equations.
t1/2 = ln 2 / λ = 0.693 / λ
where, t1/2 is half-life and λ is the decay constant.
t1/2 = 10 min = 0.693 / λ
Hence, λ = 0.693 / 10 min - (1)
Nt = Nο e∧(-λt)
Nt = amount of atoms at t =t time
Nο= initial amount of atoms
t = time taken
by rearranging the equation,
Nt/Nο = e∧(-λt) - (2)
From (1) and (2),
Nt/Nο = e∧(-(0.693 / 10 min) x 20 min)
Nt/Nο = 0.2500
Percentage of remaining nuclei = (nuclei at t time / initial nuclei) x 100%
= (Nt/Nο ) x 100%
= 0.2500 x 100%
= 25.00%
Hence, Percentage of remaining nuclei is 25.00%
Answer: HCI + KOH → KCI + H20
Explanation:
HCI(aq) + KOH(aq) → KCI(aq) + H20(l)
Acid + base → Salt + Water.
The above is a neutralization reaction in which an acid, aqeous HCl reacts completely with an appropriate amount of a base, aqueous KOH to produce salt, aqueous KCl and water, liquid H2O only.
This is a neutralization reaction since, the hydrogen ion, H+, from the HCl is neutralized by the hydroxide ion, OH-, from the KOH to form the water molecule, H2O and salt, KCl only.