Answer:
The correct answer is Option A (decrease).
Explanation:
- According to Heisenberg's presumption of unpredictability, it's impossible to ascertain a quantum state viewpoint as well as momentum throughout tandem.
- Also, unless we have accurate estimations throughout the situation, we will have a decreased consistency throughout the velocity as well as vice versa though too.
Other given choices are not connected to the given query. Thus the above is the right answer.
Answer:
B
Explanation:
V=IR I= curren V=volt R=resistor
8=2.R 8/2=R R=4
We know that the change in momentum is equals to the product of force and time that is impulse (
). Therefore, we need to determine the value of that the water is in air by using the second equation of motion,

Here, u is initial velocity which is zero.
.
Thus, impulse

From Newton`s second law,

Therefore, impulse

Given,
and 
Substituting these values, we get
Change in momentum = impulse
.
Lower. Water expands on lower temperatures, meaning less molecules in 1 m3, thus making it less dense
<span>To find the wavelength of a neutron can be calculated by using the formula
Wavelength=h/m x v
Where h is planck's constant
m=mass of neutron
v= velocity of the particle
By substituting the given values
Wavelength= 6.63 × 10–34 j s / 1.675 × 10–27 kg x 2 m/s^-1
Wavelength of a neutron=1.979 x 10^-7 m</span>