240 = 0+1/2 (-9.8t
240 = -4.9t
<span>240/-4.9 = t</span><span>
</span>49.0 = t
t= 7.0s
Answer:
a
When 

b
When 
Explanation:
From the question we are told that
The radius is R
The current is I
The distance from the center
Ampere's law is mathematically represented as
![B[2 \pi r] = \mu_o * \frac{I r^2 }{R^2 }](https://tex.z-dn.net/?f=B%5B2%20%5Cpi%20r%5D%20%20%3D%20%20%5Cmu_o%20%20%2A%20%20%5Cfrac%7BI%20r%5E2%20%20%7D%7BR%5E2%20%7D)

When 
=> 
But when 
![B = [\frac{\mu_o * I }{ 2 \pi R^2} ]* r](https://tex.z-dn.net/?f=B%20%3D%20%20%5B%5Cfrac%7B%5Cmu_o%20%2A%20%20I%20%7D%7B%202%20%5Cpi%20R%5E2%7D%20%5D%2A%20r)
Answer:
Option (3)
Explanation:
Formula used to calculate acceleration is,
F = ma
Where F = force exerted on a mass
m = mass
a = acceleration due to force exerted on the mass
Option (1),
When F = 100 N and m = 100 kg
100 = 100a
a = 1 m per sec²
Option (2)
For F = 1 N and m = 100 kg
1 = 100a
a = 
a = 0.01 m per sec²
Option (3)
For F = 100 N and m = 1 kg
100 = 1(a)
a = 100 m per sec²
Option (4)
For F = 1 N and m = 1 kg
1 = 1(a)
a = 1 m per sec²
Therefore. acceleration in Option (3) is the maximum.
<span>Minerals make up rocks. The role of minerals in rock formation is largely dependent on how the rock is formed.</span>
Answer:
1) R1 + ((R2 × R3)/(R2 + R3))
2) 0.5 A
3) 3.6 V
Explanation:
1) We can see that resistors R2 and R3 are in parallel.
Formula for sum of parallel resistors; 1/Rt = 1/R2 + 1/R3
Making Rt the subject gives;
Rt = (R2 × R3)/(R2 + R3)
Now, Resistor R1 is in series with this sum of R2 and R3. Thus;
Total resistance of circuit = R1 + ((R2 × R3)/(R2 + R3))
2) R_total = R1 + ((R2 × R3)/(R2 + R3))
We are given;
R1 = 7.2 Ω
R2 = 8 Ω
R3 = 12 Ω
R_total = 7.2 + ((8 × 12)/(8 + 12))
R_total = 7.2 + 4.8
R_total = 12 Ω
Formula for current is;
I = V/R
I = 6/12
I = 0.5 A
3) since current through the circuit is 0.5 and R1 is 7.2 Ω.
Thus, potential difference through R1 is;
V = IR = 0.5 × 7.2 = 3.6 V