5.1 m
Explanation:
Let's set the ground as our reference point. Let's also call the dropped ball to be ball #1 and its height above the ground at any time t is given by
(1)
where 10 represents its initial height or displacement of 10 m above the ground. At the same time, the displacement of the second ball with respect to the ground
is given by
(2)
At the instant the two balls collide, they will have the same displacement, therefore

or

Solving for t, we get

We can use either Eqn(1) or Eqn(2) to hind the height where they collide. Let's use Eqn(1):


Answer:
Soory
Explanation:
I really dont know but i will send you wait
The observable universe consists of galaxies and other matter that can, principally, be seen from Earth because the light signals have had time to reach us. Not everything in the sky is the way it is when we see it, because of the distance the light travels to reach us.
Hope this helps :)
Answer:
<u> </u><u>»</u><u> </u><u>Image</u><u> </u><u>distance</u><u> </u><u>:</u>

- v is image distance
- u is object distance, u is 10 cm
- f is focal length, f is 5 cm

<u> </u><u>»</u><u> </u><u>Magnification</u><u> </u><u>:</u>
• Let's derive this formula from the lens formula:

» Multiply throughout by fv

• But we know that, v/u is M

- v is image distance, v is 10 cm
- f is focal length, f is 5 cm
- M is magnification.

<u> </u><u>»</u><u> </u><u>Nature</u><u> </u><u>of</u><u> </u><u>Image</u><u> </u><u>:</u>
- Image is magnified
- Image is erect or upright
- Image is inverted
- Image distance is identical to object distance.