Answer:
The energy carried by an electromagnetic wave is proportional to the frequency of the wave. The wavelength and frequency of the wave are connected via the speed of light: Electromagnetic waves are split into different categories based on their frequency (or, equivalently, on their wavelength).
Explanation:
The gravitational force between the objects A. It would increase.
Explanation:
The magnitude of the gravitational force between two objects is given by:

where
G is the gravitational constant
are the masses of the two objects
r is the separation between the objects
In this problem, we are told that one of the object (the one on the right) gains mass: this means that, for instance, the value of
increases. We can see from the equation that the gravitational force is directly proportional to the masses: therefore, if one of the masses increases (while the distance between the two objects remains constant), it means that the force also increases.
Therefore, the correct answer is
A. It would increase.
Learn more about gravitational force:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly
The separation in time between the arrival of primary and secondary wave is called LAG TIME.
The time difference between the arrival of primary wave and secondary wave in a seismogram is called lag time. The primary wave always travels faster than the secondary wave, thus the difference between the two can be obtained by estimating the difference between the arrival time of the two waves/.
The correct answer is:
Work is negative, the environment did work on the object, and the energy of the system decreases.
In fact, the work-energy theorem states that the work done by the system is equal to its variation of kinetic energy:

In this problem, the variation of kinetic energy
is negative (because the final velocity is less than the initial velocity), so the work is negative, and this means that the environment did work on the object, and its energy decreased.