The correct answer to the question is : D) Impulse
EXPLANATION:
Before going to answer this question, first we have to understand impulse.
Impulse of a body is defined as change in momentum or the product of force with time.
Mathematically impulse = F × t = m ( v - u ).
Here, v is the final velocity
u is the initial velocity
F is the force acting on the body for time t.
Hence, the perfect answer of this question is impulse m i.e the force multiplied with time is known as impulse.
Answer:
The answer to your question is:
Explanation:
Data
mass = 4.33 kg
E = 41.7 J
v = ?
Formula
Ke = (1/2)mv²
Clear v from the equation
v = √2ke/m
Substitution
v = √2(41.7)/4.33
v = 19.26 m/s Result
No velocity will not be changed
Why?
According to Newtons 1st law the velocity of a moving object remains unchanged unless a external force affect that.
Answer:
2.1 rad/s
Explanation:
Given that,
Mass of a tether ball, m = 0.546 kg
Length of a rope, l = 4.56 m
The maximum tension the rope can withstand before breaking is 11.0 N
We need to find the maximum angular speed of the ball. Let v is the linear velocity. The maximum tension is balanced by the centripetal force acting on it. It can be given by :

Let
is the angular speed of the ball. The relation between the angular speed and angular velocity is given by :

So, the maximum angular speed of the ball is 2.1 rad/s.
Answer:
is it 20kg. Two opposing forces pushing onto each other