The melting point for ice is at 32 degrees <span>Fahrenheit or O degrees Celsius.</span>
Answer: 67 mmHg
Explanation:
According to Dalton's Gas Law, the total pressure of a mixture of gases is the sum of the pressure of each individual gas.
i.e Ptotal = P1 + P2 + P3 + .......
In this case,
Ptotal = 512 mmHg
P(oxygen) = 332 mmHg
P(carbon mono-oxide) = 113 mmHg
Remaining pressure (P3) = ?
To get P3, apply Dalton's Gas Law formula
Ptotal = P(oxygen) + P(carbon mono-oxide) + P3
512 mmHg = 332 mmHg + 113 mmHg + P3
512 mmHg = 445 mmHg + P3
P3 = 512 mmHg - 445 mmHg
P3 = 67 mmHg
Thus, the remaining pressure is 67 mmHg
The 7160 cal energy is required to melt 10. 0 g of ice at 0. 0°C, warm it to 100. 0°C and completely vaporize the sample.
Calculation,
Given data,
Mass of the ice = 10 g
Temperature of ice = 0. 0°C
- The ice at 0. 0°C is to be converted into water at 0. 0°C
Heat required at this stage = mas of the ice ×latent heat of fusion of ice
Heat required at this stage = 10 g×80 = 800 cal
- The temperature of the water is to be increased from 0. 0°C to 100. 0°C
Heat required for this = mass of the ice×rise in temperature×specific heat of water
Heat required for this = 10 g×100× 1 = 1000 cal
- This water at 100. 0°C is to be converted into vapor.
Heat required for this = Mass of water× latent heat
Heat required for this = 10g ×536 =5360 cal
Total energy or heat required = sum of all heat = 800 +1000+ 5360 = 7160 cal
to learn more about energy
brainly.com/question/7185299
#SPJ4
Answer:
the sun i think because the sun has the greatest gravitational pull