Work done is given by the change in kinetic energy of an object
- The kinetic energy of the shovel, the shrub, and in Robert's movement were changed, therefore, work is done in the given processes,
Reason:
Work is done when the total energy of object is affected by the application of force on the object over a distance
Therefore;
- In option <em>A</em>, pushing the shovel into ground (to dig out the dirt) the requires the application of a force (push) over a distance, (into and out of the ground) therefore work is done
- In option <em>B</em>, picking the shrub up gives it gravitational potential energy, therefore, work is done
- In option <em>C</em>, carrying the shrub to the hole does visible work
- In option <em>D</em>, holding the shrub while lowering it into the hole does work by preventing the shrub from falling randomly
Therefore, <u>work is done in the given processes</u>
Learn more about work-energy theorem here:
brainly.com/question/10063455
Answer:
It is showing the wavelength.
Explanation: Hope it helps you:)))
have a good day
Answer:
it is condensing , intermolecular forced are getting stronger
Explanation:
condensation is gas to liquid and intermolecular forces are attaction and liquid molecules are colser together so they have more intermolecular forces hope this helps god bless
Answer:
2.84 g's with the remaining 1 g coming from gravity (3.84 g's)
Explanation:
period of oscillation while waiting (T1) = 2.45 s
period of oscillation at liftoff (T2) = 1.25 s
period of a pendulum (T) =2π. 
where
- L = length
- a = acceleration
therefore the ration of the periods while on ground and at take off will be
=(2π
) / (2π
)
where
- a1 = acceleration on ground while waiting
- a2 = acceleration during liftoff
= 
squaring both sides we have
= 
= 
assuming that the acceleration on ground a1 = 9.8 m/s^{2}
= 
a2 = 9.8 x 
substituting the values of T1 and T2 into the above we have
a2 = 9.8 x 
a2 = 9.8 x 3.84
take note that 1 g = 9.8 m/s^{2} therefore the above becomes
a2 = 3.84 g's
Hence assuming the rock is still close to the ground during lift off, the acceleration of the rocket would be 2.84 g's with the remaining 1 g coming from gravity.