Answer:
Mg(s) + Sn²⁺(aq) ⇄ Mg²⁺(aq) + Sn(s)
Explanation:
Let's consider the following molecular equation.
Mg(s) + SnSO₄(aq) ⇄ MgSO₄(aq) + Sn(s)
The full ionic equation includes al the ions and the species that do not dissociate in water.
Mg(s) + Sn²⁺(aq) + SO₄²⁻(aq) ⇄ Mg²⁺(aq) + SO₄²⁻(aq) + Sn(s)
The net ionic equation includes only the ions that participate in the reaction (not spectator ions) and the species that do not dissociate in water.
Mg(s) + Sn²⁺(aq) ⇄ Mg²⁺(aq) + Sn(s)
Answer:
Potential energy can be defined as the energy in a body due to its position
In simple terms potential energy is the energy at rest
Explanation: Examples ;
- A spring has more potential energy when it is compressed or stretched.
- A steel ball has more potential energy raised above the ground than it has after falling to Earth.
Answer:
A
Explanation:
Let's illustrate this; see the attachment.
We see that Mrs. Jacobson is pushing to the right with a force of 100 N and there is another opposite force pushing with a force of 15 N. Since these are in opposite directions, we can say that the force opposite to Mrs. Jacobson is pushing the fridge -15 N to the right (instead of 15 N to the left).
The net force would then be:
100 N + (-15 N) = 85 N to the right
The answer is A.
The volume of the soft drink solution in milliliters that contains 102.5 g of sucrose is 11.93mL.
<h3>How to calculate volume?</h3>
The volume of a solution can be calculated by dividing the mass by the density. That is;
Volume = mass/density
According to this question, a soft drink contains 12.1% sucrose (C12H22O11) by mass. This means that the mass of the sucrose is
12.1/100 × 102.5 = 12.40g of sucrose
Volume = 12.40g ÷ 1.04g/mL
Volume = 11.93mL
Therefore, the volume of the soft drink solution in milliliters that contains 102.5 g of sucrose is 11.93mL.
Learn more about volume at: brainly.com/question/1578538