Answer:
, where the minus indicates the direction is opposite to that of the throw.
Explanation:
a)
Since MKS stands for meter-kilogram-second and we know that:



We can write that:



These are conversion factors, equal to 1, so multiplying our results by them won't change their value, only their units.
So we have that:



b)
Newton's 2nd Law tells us that F=ma, and the definition of acceleration is
, so we have:

Taking the throw direction as the positive one, for our values we have:

The answer is 165.3 cm³.
P1 * V1 / T1 = P2 * V2 / T2
The initial sample:
P1 = 84.6 kPa
V1 = 215 cm³
T1 = 23.5°C = 23.5 + 273 K = 296.5 K
At STP:
P2 = 101.3 kPa
V2 = ?
T2 = 273 K
Therefore:
84.6 * 215 / 296.5 = 101.3 * V2 / 273
61.34 = 101.3 * V2 / 273
V2 = 61.34 * 273 / 101.3
V2 = 165.3 cm³
Answer:
Oxidation
Explanation:
The browning of the apple after you cut it undergoes a natural chemical change called oxidation, wherein the apple's enzymes react with the oxygen in the environment.
These organelles are like the organs in a human and they help the cell stay alive. Each organelle has it's own specific function to help the cell survive. The nucleus of a eukaryotic cell directs the cell's activities and stores DNA. Eukaryotes also have a golgi apparatus that packages and distributes proteins.
Answer:
In a third class lever, the effort is located between the load and the fulcrum. ... If the fulcrum is closer to the effort, then the load will move a greater distance. A pair of tweezers, swinging a baseball bat or using your arm to lift something are examples of third class levers.
Explanation: