This can be solved using momentum balance, since momentum is conserved, the momentum at point 1 is equal to the momentum of point 2. momentum = mass x velocity
m1v1 = m2v2
(0.03kg x 900 m/s ) = 320(v2)
v2 = 27 / 320
v2 = 0.084 m/s is the speed of the astronaut
Clock wise idk i think you should double check my answer
B.temperature is an indirect measurement of the heat energy in a substance
Answer:
Part a)

Part B)

Explanation:
Part A)
As we know that the point A lies on the top of the loop
so we will have by energy conservation

so the speed at point A is given as




Part B)
Now the force equation at point A is given as

[/tex]

