For the velocity graph: start at 0s and 4m/s and draw a straight line to 2s and 2 m/s. Then draw a straight horizontal line to 4s and 2m/s
For the acceleration graph: start with a horizontal line from 0s and 2m/s/s to 2s and 2m/s/s. The draw another line from 2 s and 0m/s/s to 4 s and 0m/s/s
Answer:
As the capacitor is discharging, the current is increasing
Explanation:
Lets take
C= Capacitance
L=Inductance
V=Voltage
I= Current
The total energy E given as
We know that total energy E is conserved so when electric energy 1/2 CV² decreases then magnetic energy 1/2 IL² will increases.
It means that when charge on the capacitor decreases then the current will increase.
As the capacitor is discharging, the current is increasing
Answer:
Explanation:
gravitational acceleration of meteoroid
= GM / R²
M is mass of planet , R is radius of orbit of meteoroid from the Centre of the planet .
R = (.9 x 6370 + 600 )x 10³ m
= 6333 x 10³ m
M , mass of the planet = 5.97 x 10²⁴ kg .
gravitational acceleration of meteoroid
= GM / R²
= (6.67 x 10⁻¹¹ x 5.97 x 10²⁴ kg / (6333 x 10³ m)²
9.92m/s²
Answer:
Thus, if field were sampled at same distance, the field due to short wire is greater than field due to long wire.
Explanation:
The magnetic field, B of long straight wire can be obtained by applying ampere's law
I is here current, and r's the distance from the wire to the field of measurement.
The magnetic field is obviously directly proportional to the current wire. From this expression.
As the resistance of the long cable is proportional to the cable length, the short cable becomes less resilient than the long cable, so going through the short cable (where filled with the same material) is a bigger amount of currents. If the field is measured at the same time, the field is therefore larger than the long wire because of the short wire.