Lithium Hydroxide (LiOH) is an Arrhenius base
The second option only.
<h3>Explanation</h3>
A base neutralizes an acid when the two reacts to produce water and a salt.
Sulfuric acid H₂SO₄ is the acid here. There are more than one classes of bases that can neutralize H₂SO₄. Among the options, there are:
Metal hydroxides
Metal hydroxides react with sulfuric acid to produce water and the sulfate salt of the metal.
.
The formula for calcium sulfate
in option A is spelled incorrectly. Why? The charge on each calcium
is +2. The charge on each sulfate ion
is -2. Unlike
ions, it takes only one
ion to balance the charge on each
ion. As a result,
and
ions in calcium sulfate exist on a 1:1 ratio.
.
Ammonia, NH₃
Ammonia NH₃ can also act as a base and neutralize acids. NH₃ exists as NH₄OH in water:
.
The ion
acts like a metal cation. Similarly to the metal hydroxides, NH₃ (or NH₄OH) neutralizes H₂SO₄ to produce water and a salt:
.
The formula of the salt (NH₄)₂SO₄ in the fourth option spelled the ammonium ion incorrectly.
As part of the salt (NH₄)₂SO₄, the ammonium ion NH₄⁺ is one of the products of this reaction and can't neutralize H₂SO₄ any further.
Carbon molar mass=12
carbon mass in the above question =6
mole=number of atoms/6.02x10²³
6/12= number of atoms/6.02x10²³
number of atoms=1/2 x6.02x10²³
number of atoms= 6.02 x10²³/2
number of atoms=3.01x10²³
calculate moles of both reagents given and the moles of FeS that each of them would form if they were in excess
moles = mass / molar mass
moles Fe = 7.62 g / 55.85 g/mol
= 0.1364 moles
1 mole Fe produces 1 mole FeS
Therefore 7.62 g Fe can form 0.1364 moles FeS
moles S = 8.67 g / 32.07 g/mol
= 0.2703 moles S
1 mole S can from 1 moles FeS
So 8.67 g S can produce 0.2703 moles FeS
The limiting reagent is the one that produces the least product. So Fe is limiting.
The maximum amount of FeS possible is from complete reaction of all the limiting reagent.
We have already determined that the Fe can form up to 0.1364 moles of FeS, so this is max amount of FeS you can get.
Convert to mass
hope this helps :)
Hello!
The hybridization of the C atom in CH₂Br₂ is sp3
When bonding, the orbitals "s" and "p" from C atoms interact to form hybridized orbitals. If the C atom has 4 sigma bonds, as is the case in CH₂Br₂, there are 4 hybridized orbitals required, so 1 "s" orbital and 3 "p" orbitals hybridize to form an sp3 hybrid orbital. This orbital has tetrahedral geometry and the bond angle is 109,5 °.
Have a nice day!