The answer is solution a must have a lower solute concentration than solution b.
That is when water is moving across a membrane from solution a into solution b, then solution a must have a lower solute concentration than solution b.
When solution a have a lower solute concentration than solution b, then water moves across a membrane from solution a into solution b.
The explanation of the how the various concentrations of acid will affect the amount of limestone has been given below.
Effects of acid rain on limestone:-
- When an acid combines with a carbonate, it produces carbon dioxide as a gas and forms a salt that is soluble in the carbonate and acid's water.
- There are several gases in the atmosphere that can dissolve in precipitation such as rain and snow.
- Some may produce acids in rain water, such as carbonic acid, sulfuric acid, and nitric acid.
- Because the concentration is modest, the rain is not highly acidic, but it is acidic enough to react with the carbonates that make up limestone.
Thus we discussed the affects of acid rain on limestones above.
Learn more about Acid Rain here:
brainly.com/question/718250
#SPJ10
Barium chloride is salt with ionic bonds. Barium chloride contains one barium cations (charge of ion is 2+) and two chlorine anions (charge for ion is 1-).
The representative particle<span> of an ionic compound is its formula unit (</span>lowest whole number ratio of ions in an ionic compound), for barium chloride that is BaCl₂.
Answer:
beryllium iodide has a molar mass of 262.821 g mol−1 , which means that 1 mole of beryllium iodide has a mass of 262.821 g . To find the mass of 0.02 moles of beryllium iodide, simply multiply the number of moles by the molar mass in conversion factor form.
Explanation:
Answer:
The second option
Explanation:
Speed is defined at the rate at which distance changes with time. It is scalar quantity and it is expressed as shown below:
Speed = 
At constant speed the rate of change of distance with time is the same. On the second graph, this is noticeable. Both distance and time change at the same rate.