Emf e = 11
r 1 = 3.0
r 2 = 3.0
r 3 = ?
The two in parallel are equivalent to 3 • 3/6 = 1.5 Ω
To have 2.4 volts across them, the current is I = 2.4/1.5 = 1.6 amps. and the unknown R = (11–2.4) / 1.6 = 5.375 Ω or 5.4 Ω
Answer:
<em>The resultant velocity has a magnitude of 38.95 m/s</em>
Explanation:
<u>Vector Addition</u>
Given two vectors defined as:


The sum of the vectors is:

The magnitude of a vector can be calculated by

Where x and y are the rectangular components of the vector.
We have a plane flying due west at 34 m/s. Its velocity vector is:

The wind blows at 19 m/s south, thus:

The sum of both velocities gives the resultant velocity:

The magnitude of this velocity is:


d = 38.95 m/s
The resultant velocity has a magnitude of 38.95 m/s
We know, Momentum is the product of mass and velocity. As velocity is equal, momentum of Truck will be greater as mass of Truck is greater than the scooter. As momentum is greater from truck side, it will transfer the same amount to the scooter, so it flies away
Hope this helps!
Positive will react better together. But opposites will try to get as far away as possible.