Answer:
Hope this helps! Please Mark Brainliest!
Explanation:
The Nucleus: The Center of an Atom. The nucleus, that dense central core of the atom, contains both protons and neutrons. Electrons are outside the nucleus in energy levels.
<span>31.3 m/s
Since the water balloon is being launched at a 45 degree angle, the horizontal and vertical speeds will be identical. Also the time the balloon takes to reach its peak altitude will match the time it takes to fall. So let's create a few expressions about what we know.
Distance the water balloon travels at velocity v for time t
d = vt
Total time required for the entire trip is double since the balloon goes up, then goes down
t = 2v/a
Now let's plug in the numbers we have, assuming the acceleration due to gravity is 9.8 m/s^2
t = 2v/9.8
100 = vt
Substitute 2v/9.8 for t in the 2nd formula
100 = v(2v/9.8)
Solve for v.
100 = v(2v/9.8)
100 = 2v^2/9.8
980. = 2v^2
490 = v^2
22.13594 = v
So we now know that both the horizontal velocity and vertical velocity needed is 22.13594 m/s. Let's verify that
2*22.13594 / 9.8 = 4.51754
So it will take 4.51754 second for the balloon to hit the ground after being launched.
4.51754 * 22.13594 = 100
And during that time it will travel 100 meters horizontally.
But we need to know the total velocity. And the Pythagorean theorem comes to the rescue. Just square the 2 velocities, add them together, and take the square root. We already know the square is 490 from the work above, so
sqrt(490+490) = sqrt(980) = 31.30495 m/s</span>
Answer:
There is no change, unless your mass is somehow at the quantum level, at which the concept of half-life breaks down.
Half life is a property of the specific radioactive isotope...NOT of the initial sample's mass.
I'll tell you how I look at this, although I may be missing something important.
Position = x(t) = 0.5 sin(pt + p/3)
Speed = position' = x'(t) = 0.5 p cos(pt + p/3)
Acceleration = speed' = position ' ' = x ' '(t) = -0.5 p² sin(pt + p/3)
At (t = 1.0),
x ' '(t) = -0.5 p² sin( 4/3 p )
In order to evaluate this, don't I still have to know what 'p' is ? ?
I don't think it can be evaluated with the information given in the question.
Clearly visible data points and appropriate labels on each access that include units