1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kipish [7]
3 years ago
5

Richard Julius once made a model plane that could travel a max speed of 110 m/s. Suppose the plane was held in a circular path b

y a control line. Suppose the plane ran out of gas while moving at its maximum speed and Richard Julius pulled the line in to bring the plane home while it continued in a circular path. If the line's initial length is 120 m and Richard Julius shortened the line by 0.80 m every second, what was the plane's speed after 33.0 s?
Physics
1 answer:
hjlf3 years ago
8 0

Answer:

85.8 m/s

Explanation:

We know that the length of the circular path, L the plane travels is

L = rθ where r = radius of path and θ = angle covered

Now,its speed , v = dL/dt = drθ/dt = rdθ/dt + θdr/dt

where dθ/dt = ω = angular speed = v'/r where v' = maximum speed of plane and r = radius of circular path

Now, from θ = θ₀ + ωt where θ₀ = 0 rad, ω = angular speed  and t = time,

θ = θ₀ + ωt = 0 + ωt = ωt

So, v = rdθ/dt + θdr/dt

v = rω + ωtdr/dt

v = (r + tdr/dt)ω

v = (r + tdr/dt)v'/r

v = v' + tv'/r(dr/dt)

v = v'[1 + t(dr/dt)/r]

Given that v' = 110 m/s, t = 33.0s, r = 120 m and dr/dt = rate at which line is shortened = -0.80 m/s (negative since it is decreasing)

So, v = 110 m/s[1 + 33.0 s(-0.80 m/s)/120 m]

v = 110 m/s[1 + 11.0 s(-0.80 m/s)/40 m]

v = 110 m/s[1 + 11.0 s(-0.02/s)]

v = 110 m/s[1 - 0.22]

v = 110 m/s(0.78)

v = 85.8 m/s

You might be interested in
The speed of sound in room temperature (20°C) air is 343 m/s; in room temperature helium, it is 1010 m/s. The fundamental freque
Lera25 [3.4K]

Answer: f = 927.55Hz

Explanation: Since the the tube is open-closed, the length of air and the wavelength of sound passing through the tube is given below

L = λ/4 where λ = wavelength.

speed of sound in air = v = 343m/s.

fundamental frequency of open closed tube = 315Hz

λ = 4L.

v = fλ

343 = 315 * 4L

343 = 1260 * L

L = 343/ 1260

L = 0.27m

In the same tube of length L = 0.27m but different medium ( helium), the speed of sound is 1010m/s.

The length of tube and wavelength are related by the formulae below

L = λ/4, λ=4L

λ = 4 * 0.27

λ = 1.087m.

v = fλ

1010 = f * 1.087

f = 1010/1.807

f = 927.55Hz

4 0
3 years ago
S waves arrive at distant points before other seismic waves, true or false
Step2247 [10]
False. p waves, than s waves
3 0
4 years ago
A yellow train of mass 100 kg is moving at 8 m/s toward an orange train of mass 200 kg traveling in the opposite direction on th
Serhud [2]

The initial momentum of the yellow and the orange train is 1000kgm/s.

Momentum is the product of the mass and velocity of any object.

Momentum is denoted by P.

Momentum P = mv , where m = mass and v = velocity.

<h3>Given:</h3>

Mass of the orange train = 200kg

Velocity of the orange train = 1m/s

So, the momentum of the orange train will be,

                            ∴    P = mv

                                  P = 200 x 1

                                  P = 200 kgm/s

∴   The initial momentum of the orange train is 200kgm/s.

Mass of the yellow train = 100kg

Velocity of the yellow train = 8m/s

So, the momentum of the yellow train will be,

                            ∴    P = mv

                                  P = 100 x 8

                                  P = 800 kgm/s

∴ The initial momentum of the yellow train is 800kgm/s.

Therefore, the initial momentum of the yellow and the orange train is 1000kgm/s.

Learn more about momentum here:

brainly.com/question/25849204

#SPJ1

5 0
2 years ago
Use examples to explain how the geosphere interacts with two other of Earth's spheres. Explain the interaction for each using co
Orlov [11]

The geosphere interacts with the hydrosphere when water causes rock to erode. The atmosphere provides the geosphere with heat and energy for erosion, and the geosphere reflects the sun's energy back into the atmosphere.

7 0
3 years ago
Read 2 more answers
A 2 kg ball is dropped above the surface of Planet X. If the gravitational field strength at the surface of Planet X is 5 N/kg,
Trava [24]

Given data:

* The mass of the ball is 2 kg.

* The gravitational field strength at the surface of planet X is 5 N/kg.

Solution:

The weight of the ball on the planet X is,

W=ma

where m is the mass of ball, a is the gravitational field strength,

Substituting the known values,

\begin{gathered} W=2\times5 \\ W=10\text{ N} \end{gathered}

Thus, the weight of the ball on the surface of planet X is 10 N.

3 0
1 year ago
Other questions:
  • Assume that the length of the magnet is much smaller than the separation between it and the charge. As a result of magnetic inte
    13·1 answer
  • A student decides they need a cup of coffee. The energy lost as the coffee cools down is _____ the energy gained by the surround
    5·2 answers
  • Landon attends an early childhood program that is located at a community center which also runs an adult care program.
    14·1 answer
  • A 1500 kg car traveling at 90 km/hr East collides with a 3000 kg truck traveling at 60 km/hr South. They stick together and move
    13·1 answer
  • When doing scientific research, the sources used should be
    7·1 answer
  • I need help with high school chemistry!!! Can someone help
    6·1 answer
  • Which ion channels mediate the falling phase of an action potontial?
    5·1 answer
  • A body of mass 80kg was lifted vertically through a distance of 5.0 metres. Calculate the work done on the body. ( Acceleration
    13·1 answer
  • You need to calculate the volume of berm that has a starting cross-sectional area of 118 SF, and an ending cross-sectional area
    6·1 answer
  • A runner slows down after completing works her deceleration is 0.25m/s after 5 sec she is traveling at 4m/s determine her initia
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!