Answer:
r = 2,026 10⁹ m and T = 2.027 10⁴ s
Explanation:
For this exercise let's use Newton's second law
F = m a
where the force is electric
F =
Acceleration is centripetal
a = v² / r
we substitute
r =
(1)
let's look for the charge in the insulating sphere
ρ = q₂ / V
q₂ = ρ V
the volume of the sphere is
v = 4/3 π r³
we substitute
q₂ = ρ
π r³
q₂ = 3 10⁻⁹
π 4³
q₂ = 8.04 10⁻⁷ C
let's calculate the radius with equation 1
r = 9 10⁹ 1.6 10⁻¹⁹ 8.04 10⁻⁷ /(9.1 10⁻³¹ 628 10³)
r = 2,026 10⁹ m
this is the radius of the electron orbit around the charged sphere.
Since the orbit is circulating, the speed (speed modulus) is constant, we can use the uniform motion ratio
v = x / t
the distance traveled in a circle is
x = 2π r
In this case, time is the period
v = 2π r /T
T = 2π r /v
let's calculate
T = 2π 2,026 10⁹/628 103
T = 2.027 10⁴ s