1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Studentka2010 [4]
2 years ago
12

An electron is moving through an (almost) empty universe at a speed of 628 km,/s toward the only other object in the universe —

an insulating sphere with a diameter of 4 m and charge density 3nC/m2 on its outside surface. The sphere "captures" the electron, which falls into a circular orbit.
Required:
Find the radius and period of the orbit.
Physics
1 answer:
sattari [20]2 years ago
4 0

Answer:

  r = 2,026 10⁹ m  and   T = 2.027 10⁴ s

Explanation:

For this exercise let's use Newton's second law

        F = m a

where the force is electric

        F = k \frac{q_1q_2}{r^2}

Acceleration is centripetal

        a = v² / r

we substitute

        k \frac{q_1q_2}{r^2} = m \frac{v^2}{r}

        r = k \frac{q_1q_2}{m \  v^2}          (1)

let's look for the charge in the insulating sphere

          ρ = q₂ / V

          q₂ = ρ V

the volume of the sphere is

         v = 4/3 π r³

we substitute

        q₂ = ρ \frac{4}{3} π r³

        q₂ = 3 10⁻⁹ \frac{4}{3} π 4³

        q₂ = 8.04 10⁻⁷ C

let's calculate the radius with equation 1

        r = 9 10⁹  1.6 10⁻¹⁹  8.04 10⁻⁷ /(9.1  10⁻³¹ 628 10³)

        r = 2,026 10⁹ m

this is the radius of the electron orbit around the charged sphere.

Since the orbit is circulating, the speed (speed modulus) is constant, we can use the uniform motion ratio

        v = x / t

the distance traveled in a circle is

        x = 2π r

In this case, time is the period

        v = 2π r /T

        T = 2π r /v

let's calculate

        T = 2π 2,026 10⁹/628 103

        T = 2.027 10⁴ s

You might be interested in
Find the moments of inertia Ix, Iy, I0 for a lamina that occupies the part of the disk x2 y2 ≤ 36 in the first quadrant if the d
Tasya [4]

Answer:

I(x)  = 1444×k ×{\pi}

I(y)  = 1444×k ×{\pi}

I(o) = 3888×k ×{\pi}  

Explanation:

Given data

function =  x^2 + y^2 ≤ 36

function =  x^2 + y^2 ≤ 6^2

to find out

the moments of inertia Ix, Iy, Io

solution

first we consider the polar coordinate (a,θ)

and polar is directly proportional to a²

so p = k × a²

so that

x = a cosθ

y = a sinθ

dA = adθda

so

I(x) = ∫y²pdA

take limit 0 to 6 for a and o to \pi /2 for θ

I(x) = \int_{0}^{6}\int_{0}^{\pi/2} y²p dA

I(x) = \int_{0}^{6}\int_{0}^{\pi/2} (a sinθ)²(k × a²) adθda

I(x) = k  \int_{0}^{6}a^(5)  da ×  \int_{0}^{\pi/2}  (sin²θ)dθ

I(x) = k  \int_{0}^{6}a^(5)  da ×  \int_{0}^{\pi/2}  (1-cos2θ)/2 dθ

I(x)  = k ({r}^{6}/6)^(5)_0 ×  {θ/2 - sin2θ/4}^{\pi /2}_0

I(x)  = k × ({6}^{6}/6) × (  {\pi /4} - sin\pi /4)

I(x)  = k ×  ({6}^{5}) ×   {\pi /4}

I(x)  = 1444×k ×{\pi}    .....................1

and we can say I(x) = I(y)   by the symmetry rule

and here I(o) will be  I(x) + I(y) i.e

I(o) = 2 × 1444×k ×{\pi}

I(o) = 3888×k ×{\pi}   ......................2

3 0
3 years ago
The jet stream flows from east to west across the United States.<br><br><br> True False
velikii [3]
This is false. they flow west to east
8 0
3 years ago
Read 2 more answers
Cual es el deporte que le da fortaleza y flexibilidad al cuerpo
AlexFokin [52]

Answer:

Aesthetic sports

Explanation:

Aesthetic sports are the one's that need well-developed physical qualities such as strength, agility, stamina, flexibility, and technical knowledge and artistry, in addition to technical ability and artistry. Elite athletes in these sports generally have a low abdominal fat , and the ranking is subjective.

In aesthetic sports like gymnastics, swimming, and figure skaters, dynamic and proactive flexibility is required.

4 0
3 years ago
An object with height h, mass M, and a uniform cross-sectional area A floats upright in a liquid with density ρ.
soldi70 [24.7K]
** Missing information: The vertical distance from surface of liquid to bottom of the object is sought in this question, with the condition that the object is at equilibrium **

Ans: The vertical distance = y = M/(ρA)

Explanation:

Support the vertical distance = y

Object's density = M/(A*h) (since A*h = volume)

By applying the condition, 

(M/(Ah))/ρ = y/h

M/(ρAh) = y/h

y = M/(ρA)  

7 0
3 years ago
How does the speed of waves vary in different media? Radio waves are used to transmit verbal messages through space. Sound waves
ser-zykov [4K]
Its the first one, second one, and last one.
8 0
3 years ago
Other questions:
  • Help?? This is for my Physics class
    14·1 answer
  • If a freely falling rock were equipped with a speedometer, by how much would itd speed readings increase with each second if it
    6·1 answer
  • Alice and tom dive from an overhang into the lake below. tom simply drops straight down from the edge, but alice takes a running
    10·1 answer
  • Air expands isentropically from 2.2 MPa and 77°C to 0.4 MPa. Calculate the ratio of the initial to the final speed of sound.
    12·1 answer
  • In a game of tug of war, a rope is pulled by a force of 182 N to the right and by a force of 108 N to the left. Calculate the ma
    5·1 answer
  • What is the strength of an electric field that will balance the weight of a proton?
    12·1 answer
  • How does a body move if it's constantly under force?
    9·2 answers
  • A car is accelerating at 30 m/s2, if the car is 400 kg how much force
    8·1 answer
  • A person with a near point of 85 cm, but excellent distant vision, normally wears corrective glasses. But he loses them while tr
    15·1 answer
  • Identify 3 preys and their preys
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!