Answer:
5.3 cm
Explanation:
This question is an illustration of real and apparent distance.
From the question, we have the following given parameters
Real Distance, R = 8.0cm
Refractive Index, μ = 1.5
Required
Determine the apparent distance (A)
The relationship between R, A and μ is:
μ = R/A
i.e.
Refractive Index = Real Distance ÷ Apparent Distance
Substitute values in the above formula
1.5 = 8/A
Multiply both sides by A
1.5 * A = A * 8/A
1.5A = 8
Divide both side by 1.5
1.5A/1.5 = 8/1.5
A = 8/1.5
A = 5.3cm
Hence, the letters would appear at a distance of 5.3cm
Answer:
force (tension) of 29.4 N (upward) in 100 cm
force (tension) of 58.4 N (upward) in 200 cm
Explanation:
Given:
Length of tube = 5 m (500 cm)
Mass of tube = 9
Suspended vertically from 150 cm and 50 cm.
Computation:
Force = Mass × gravity acceleration.
Force = 9.8 x 9
Force = 88.2 N
So,
Upward forces = Downward forces
D1 = 150 - 50 = 100 cm
D2 = 150 + 50 = 200 cm
And F1 = F2
F1 x D1 = F2 x D2
F1 x 100 = F2 x 200
F = 2F
Total force = Upward forces + Downward forces
3F = 88.2
F = 29.4 and 2F = 58.8 N
force (tension) of 29.4 N (upward) in 100 cm
force (tension) of 58.4 N (upward) in 200 cm
Answer
D.Diffraction
Explanation
Diffraction is a property that is experienced by waves when they come across a barrier when they are in motion.
The ways tends to curve behind the barrier. This is called diffraction of waves.
Now, sound is a wave and it also experience diffraction. . So the brother will be able to hear the sound due to diffraction
Answer:
-67,500 kgm/s
Explanation:
1300 * 20 + 1100 * (-85) = -67,500 kgm/s