What are the choices ?
Without some directed choices, I'm, free to make up any
reasonable statement that could be said about Kevin in this
situation. A few of them might be . . .
-- Kevin will have no trouble getting back in time for dinner.
-- Kevin will have no time to enjoy the scenery along the way.
-- Some simple Physics shows us that Kevin is out of his mind.
He can't really do that.
-- Speed = (distance covered) / (time to cover the distance) .
If time to cover the distance is zero, then speed is huge (infinite).
-- Kinetic energy = (1/2) (mass) (speed)² .
If speed is huge (infinite), then kinetic energy is huge squared (even more).
There is not enough energy in the galaxy to push Kevin to that kind of speed.
-- Mass = (Kevin's rest-mass) / √(1 - v²/c²)
-- As soon as Kevin reaches light-speed, his mass becomes infinite.
-- It takes an infinite amount of energy to push him any faster.
-- If he succeeds somehow, his mass becomes imaginary.
-- At that point, he might as well turn around and go home ...
if he ever reached Planet-Y, nobody could see him anyway.
Answer:
I = (1.80 × 10⁻¹⁰) A
Explanation:
From Biot Savart's law, the magnetic field formula is given as
B = (μ₀I)/(2πr)
B = magnetic field = (1.0 × 10⁻¹⁵) T
μ₀ = magnetic constant = (4π × 10⁻⁷) H/m
r = 3.6 cm = 0.036 m
(1.0 × 10⁻¹⁵) = (4π × 10⁻⁷ × I)/(2π × 0.036)
4π × 10⁻⁷ × I = 1.0 × 10⁻¹⁵ × 2π × 0.036
I = (1.80 × 10⁻¹⁰) A
Hope this Helps!!!
The periodic sign of magnesium is ------> mg
Answer:

Explanation:
Acceleration is defined as the change in velocity divided by the time it took to produce such change. The formula then reads:

Where Vf is the final velocity of the object, (in our case 80 m/s)
Vi is the initial velocity of the object (in our case 0 m/s because the object was at rest)
and t is the time it took to change from the Vi to the Vf (in our case 0.05 seconds.
Therefore we have:

Notice that the units of acceleration in the SI system are
(meters divided square seconds)