It is to be noted that it is impossible to find the Maclaurin Expansion for F(x) = cotx.
<h3>What is
Maclaurin Expansion?</h3>
The Maclaurin Expansion is a Taylor series that has been expanded around the reference point zero and has the formula f(x)=f(0)+f′. (0) 1! x+f″ (0) 2! x2+⋯+f[n](0)n!
<h3>
What is the explanation for the above?</h3>
as indicated above, the Maclaurin infinite series expansion is given as:
F(x)=f(0)+f′. (0) 1! x+f″ (0) 2! x2+⋯+f[n](0)n!
If F(0) = Cot 0
F(0) = ∝ = 1/0
This is not definitive,
Hence, it is impossible to find the Maclaurin infinite series expansion for F(x) = cotx.
Learn more about Maclaurin Expansion at;
brainly.com/question/7846182
#SPJ1
both b and c are the right
The modern hydraulic lifts make use of biodegradable fluid to transmit hydraulic power
<em>Question: The options are left out in the question. The details and facts about the modern hydraulic lift are presented here</em>
<em />
Details about the modern hydraulic lifts include;
The development of the modern hydraulic occurred in the Industrial Revolution to perform task done previously by steam powered elevators
The power of the hydraulic lift come from the hydraulic cylinder known as the actuator, which in turn is powered by pressurized hydraulic fluid such as oil
The hydraulic fluid is pushed by a piston rod through which energy is capable of being transferred, such that the applied force is multiplied, to provide more power for lifting
<u>Facts about the modern hydraulic lifts include;</u>
- The dry motor in the modern hydraulic lift is more efficient and consumes 20% less energy
- It comprises of valves that are controlled electronically such that the response is much rapid and the energy consumption is reduced by a further 20%
- The cars used in the modern lift are lighter, as well as the slings, which reduces the power usage by 20%
- It makes use of chemicals which are environmentally friendly as hydraulic fluid
- The flash point of the fluid used is higher, as well as it posses 50% lower compressibility as well elasticity
Learn more here:
brainly.com/question/16942803
Answer:
Explanation:
Using the kinematics equation
to determine the velocity of car B.
where;
initial velocity
= constant deceleration
Assuming the constant deceleration is = -12 ft/s^2
Also, the kinematic equation that relates to the distance with the time is:

Then:

The distance traveled by car B in the given time (t) is expressed as:

For car A, the needed time (t) to come to rest is:

Also, the distance traveled by car A in the given time (t) is expressed as:

Relating both velocities:





t = 2.25 s
At t = 2.25s, the required minimum distance can be estimated by equating both distances traveled by both cars
i.e.



d + 104.625 = 114.75
d = 114.75 - 104.625
d = 10.125 ft