Let, the time when <span>Jan cough up to Carol = x
We know, Distance = Speed * Time.
So, Equation would be: 2x + 5*2 = 6x
2x + 10 = 6x
6x - 2x = 10
4x = 10
x = 10/4 = 2.5
Distance traveled in that time = 2.5 * 6 = 15 miles
In short, Your Answer would be: 15 miles
Hope this helps!</span>
Step-by-step explanation:
are vertically opposite angles.
![\therefore \: \angle PTS\: = \: \angle QTR \\ \\ \therefore \: [11(y - 10)] \degree = (4y - 5)\degree \\ \\ \therefore \:11y - 110 = 4y - 5 \\ \\ \therefore \:11y - 4y = 110 - 5\\ \\ \therefore \:7y = 105 \\ \\ \therefore \:y = \frac{105}{5} \\ \\ \huge \red{ \boxed{\therefore \:y = 15}} \\ \\ \therefore \: m\angle PTS\: =[11(y - 10)] \degree \\ = [11(15- 10)] \degree \\ = [11 \times 5] \degree \\ \huge \orange{ \boxed{\therefore \: m\angle PTS\: = 55 \degree}}](https://tex.z-dn.net/?f=%20%5Ctherefore%20%5C%3A%20%5Cangle%20PTS%5C%3A%20%20%3D%20%5C%3A%20%5Cangle%20QTR%20%5C%5C%20%20%5C%5C%20%20%5Ctherefore%20%5C%3A%20%5B11%28y%20-%2010%29%5D%20%20%5Cdegree%20%3D%20%284y%20-%205%29%5Cdegree%20%5C%5C%20%20%5C%5C%20%20%5Ctherefore%20%5C%3A11y%20-%20110%20%3D%204y%20-%205%20%5C%5C%20%20%5C%5C%20%5Ctherefore%20%5C%3A11y%20-%204y%20%3D%20110%20-%205%5C%5C%20%20%5C%5C%20%5Ctherefore%20%5C%3A7y%20%3D%20105%20%5C%5C%20%20%5C%5C%20%20%5Ctherefore%20%5C%3Ay%20%3D%20%20%5Cfrac%7B105%7D%7B5%7D%20%5C%5C%20%20%5C%5C%20%20%20%5Chuge%20%5Cred%7B%20%5Cboxed%7B%5Ctherefore%20%5C%3Ay%20%3D%20%2015%7D%7D%20%5C%5C%20%20%20%5C%5C%20%5Ctherefore%20%5C%3A%20m%5Cangle%20PTS%5C%3A%20%20%3D%5B11%28y%20-%2010%29%5D%20%20%5Cdegree%20%20%20%5C%5C%20%20%3D%20%5B11%2815-%2010%29%5D%20%20%5Cdegree%20%5C%5C%20%20%3D%20%5B11%20%5Ctimes%205%5D%20%20%5Cdegree%20%5C%5C%20%20%20%20%5Chuge%20%5Corange%7B%20%5Cboxed%7B%5Ctherefore%20%5C%3A%20m%5Cangle%20PTS%5C%3A%20%3D%2055%20%5Cdegree%7D%7D)
Answer:
log_10(x) - log_10(100000)
Step-by-step explanation:

Answer:
-2
Step-by-step explanation:
115 is the correct answer.
I saw the diagram earlier :)
Hope this helps, have a great day, and God bless.
Brainliest is always appreciated :)