Explanation:
<h2>When we decrease the temperature, less heat energy is supplied to the atoms, and so their average kinetic energy decreases. When they enter a phase transition, such as freezing from a liquid to a solid, the temperature is not decreasing or increasing, and stays constant</h2>
Explanation:
It is given that,
Mass of the runner, m = 70 kg
Length of the tendon, l = 15 cm = 0.15 m
Area of cross section, 
Part A,
Let the runner's Achilles tendon stretch if the force on it is 8.0 times his weight, F = 8 mg
Young's modulus for tendon is, 
The formula of the Young modulus is given by :



Part B,
The fraction of the tendon's length does this correspond is given by :


Hence, this is the required solution.
Answer:
<em>The distance of the light is 9.4608 x 10^25 m</em>
<em></em>
Explanation:
Time taken by the light = 10 billion years = 10 x 10^9 years
speed of light = 3 x 10^8 m/s
speed of light in m/years is = (3 x 10^8)/(60 x 60 x 24 x 365) = 9.4608 x 10^15 m/year
distance = speed x time
therefore, the distance of this light = 10 x 10^9 x 9.461 x 10^15 = <em>9.4608 x 10^25 m</em>
I think the answer for the question above its b 1.2