Answer:
When a substance is heated, it gains thermal energy. Therefore, its particles move faster and its temperature rises. When a substance is cooled, it loses thermal energy, which causes its particles to move more slowly and its temperature to drop.
The resulting pressure of the gas after decreasing the initial volume from 2 L to 1 L is 3 atm.
<h3>What is
Boyle's Law?</h3>
According to the Boyle's Law at constant temperature, pressure of the gas is inversely proportional to the volume of that gas.
For the given question we use the below equation is:
P₁V₁ = P₂V₂, where
P₁ = initial pressure of gas = 1.5 atm
V₁ = initial volume of gas = 2 L
P₂ = final pressure of gas = ?
V₂ = final volume of gas = 1 L
On putting all these values on the above equation, we get
P₂ = (1.5atm)(2L) / (1L) = 3 atm
Hence required pressure of the gas is 3 atm.
To know more about Boyle's Law, visit the below link:
brainly.com/question/469270
Answer:
b. 1.5 atm.
Explanation:
Hello!
In this case, since the undergoing chemical reaction suggests that two moles of A react with one moles of B to produce two moles of C, for the final pressure we can write:

Now, if we introduce the stoichiometry, and the change in the pressure
we can write:

Nevertheless, since the reaction goes to completion, all A is consumed and there is a leftover of B, and that consumed A is:

Thus, the final pressure is:

Therefore the answer is b. 1.5 atm.
Best regards!
Answer:
atoms
Explanation:
for sugar to dissolve in water hydaration must be equal to or greater than the lattice energy or molecular forces so when the molecular forces breaks new atoms are formed for recombination in new compound