Answer:
-196 kJ
Explanation:
By the Hess' Law, the enthalpy of a global reaction is the sum of the enthalpies of the steps reactions. If the reaction is multiplied by a constant, the value of the enthalpy must be multiplied by the same constant, and if the reaction is inverted, the signal of the enthalpy must be inverted too.
2S(s) + 3O₂(g) → 2SO₃(g) ΔH = -790 kJ
S(s) + O₂(g) → SO₂(g) ΔH = -297 kJ (inverted and multiplied by 2)
2S(s) + 3O₂(g) → 2SO₃(g) ΔH = -790 kJ
2SO₂(g) → 2S(s) + 2O₂(g) ΔH = +594 kJ
-------------------------------------------------------------
2S(s) + 3O₂(g) + 2SO₂(g) → 2SO₃(g) + 2S(s) + 2O₂(g)
Simplifing the compounds that are in both sides (bolded):
2SO₂(g) + O₂(g) → 2SO₃(g) ΔH = -790 + 594 = -196 kJ
Answer:
mark me as a brainlist answer
Explanation:
Oxygen
Answer: ice is less dense than liquid water. If ice was more dense, Earth would freeze.
Explanation: There are many reasons why life on Earth depends on the characteristics of water. One could discuss hydrogen bonds and its role as a solvent, but the unusual property of water is is the change in density with change in temperature. Water is densest at 4 degC, which is why ice floats - it is less dense than cold water (it melts quickly in warm water, so density isn’t impotant at higher temperatures). Most liquids are less dense than the solid, frozen form. If this was the case with water, any ice that formed would sink, and sease would freeze from the bottom up. Furthermore, the lowest layers would be insulated and would not all melt in summer. Thus over time, the seas would become a thin layer of liquid water at best, over solid ice. Life could not develop without liquid seas. In addition, ice is reflective, reducing the amount of sunlight absorbed, further reducing temperatures. Without ocean circulation, polar areas would be even colder, and there would be no rain.
The answer is c. Calorimeter