Answer:
6.1328 kg
60.16284 N
Explanation:
r = Radius of ball = 0.11 m
= Density of fluid =
(Assumed)
g = Acceleration due to gravity = 9.81 m/s²
m = Mass of ball
V = Volume of ball = 
The weight of the bowling ball will balance the buouyant force

The mass of the bowling ball will be 6.1328 kg
Weight will be 
Answer:
25 N
Explanation:
Work is a product of force and perpendicular distance moved.
W=Fd where F is force exerted and d is perpendicular distance.
However, for this case, the distance is inclined hence resolving it to perpendicular so that it be along x-axis we have distance as 
Therefore, 
Making F the subject of the formula then
where
is the angle of inclination. Substituting 190 J for W then 18 degrees for
and 8 m for d then
Hi there!
The answer would be B. the slope of the plane.
Changing the slope of the plane would show how fast the ball went when Galileo changed the steepness of the slope. If he didn’t change the slopes steepness he would have the same results each time.
Hope this helps !
Answer:
B) Degrees
Explanation:
The directions of the vectors are often defined in terms of due East, due North, due West and due South. A direction exactly in between of North and East can be described as Northeast, similarly we can describe directions in terms of Northwest, Southeast and South west.
From these, the direction of a vector can be easily expressed in degrees, which is measured counter clockwise about its tail from due East. Considering that we can say that East is at 0° , North is at 90° , West is at 180 and South is at 270° counter clockwise rotation from due East.
So, we know that the direction of a vector lying somewhere between due East i.e 0° and due North i.e 90°, will be measured in degrees, which will have a value between 0°-90°