Answer: The final temperature is 470K
Explanation: Using the relation;
Q= ΔU +W
Given, n = 2mol
Initial temperature T1= 345K
Heat =Q= 2250J
Workdone=W=-870J(work is done on gas)
T2 =Final temperature =?
ΔU =3/2nR(T2-T1)
ΔU=3/2 × 2 ×8.314 (T2 - 345)
ΔU=24.942(T2-345)
Therefore Q = 24.942(T2-345)+ (-870)
2250=24.942(T2-345)+ (-870)
125.09=(T2-345)
T2 =470K
Therfore the final temperature is 470K
Answer:
About 66 miles per hour
Explanation:
Based on the information given we can assume the car traveled the same number of miles every hour meaning all we need to do is divide.
400/6 ≈ 66 miles per hour
Answer:
Capacitive reactance is 132.6 Ω.
Explanation:
It is given that,
Capacitance, 
Voltage source, V = 20 volt
Frequency of source, f = 60 Hz
We need to find the capacitive reactance. It is defined as the reactance for a capacitor. It is given by :



So, the capacitive reactance of the capacitor is 132.6 Ω. Hence, this is the required solution.
Answer:
B : It will avoid the distortion from the atmosphere and give scientists more accurate data
Explanation:
It's usually taken from <span>400 to 700 nm.</span>