A star with greater mass will die out faster than the Sun.
<h3>What factors star is dependent on?</h3>
A star's future relies upon its mass. For the most part, the more huge the star, the quicker it consumes its fuel supply, and the more limited its life. The most huge stars can wear out and detonate in a cosmic explosion after two or three million years of combination.
Our Sun is a typical estimated star: there are more modest stars and bigger stars, even up to multiple times bigger. Numerous other planetary groups have different suns, while our own simply has one. The Sun is made for the most part out of hydrogen and helium gas.
In this manner, one correlation in the occasions in the existence of the Sun with those of a star that beginnings with a mass multiple times more prominent than the Sun's is a star that has a more noteworthy mass will vanish quicker.
Learn more about Star.
brainly.com/question/21458024
#SPJ1
Part 1)
here we know that supply took 10 s to reach the ground
so here we will have




Part 2)
Here all the supply covered horizontal distance of 650 m in 10 s interval of time
so here we can say



Answer:
The answer to your question should be D.
Explanation:
reactants are on the laft side of arrow and products are on right side of arrow
Becomes older
Explanation:
As sea floor spreading occurs at divergent margins, the oceanic plate becomes older. Younger plate margin are the closest to the margin whereas the older plates bushes backward away from the spreading centers.
- The idea that the sea floor spreads was postulated by Harry Hess shortly after the second world war around the 1960's.
- At divergent margins new crust materials from the mantle are brought to the surface.
- They crystallize and settle at the flanks of plate margins.
- Older ones are pushed backward away from the margin into far away subduction zones.
Learn more:
Sea floor spreading brainly.com/question/9912731
#learnwithBrainly
Answer:
Energy
Explanation:
When an object vibrates, it creates kinetic energy that is transmitted by molecules in the medium. As the vibrating sound wave comes in contact with air particles passes its kinetic energy to nearby molecules. As these energized molecules begin to move, they energize other molecules that repeat the process.