Answer:
Hello There!!
Explanation:
There is no work done against the force of gravity because the angle of displacement and the direction is 90°.
hope this helps,have a great day!!
~Pinky~
Answer:
L₀ = L_f , K_f < K₀
Explanation:
For this exercise we start as the angular momentum, with the friction force they are negligible and if we define the system as formed by the disk and the clay sphere, the forces during the collision are internal and therefore the angular momentum is conserved.
This means that the angular momentum before and after the collision changes.
Initial instant. Before the crash
L₀ = I₀ w₀
Final moment. Right after the crash
L_f = (I₀ + mr²) w
we treat the clay sphere as a point particle
how the angular momentum is conserved
L₀ = L_f
I₀ w₀ = (I₀ + mr²) w
w =
w₀
having the angular velocities we can calculate the kinetic energy
starting point. Before the crash
K₀ = ½ I₀ w₀²
final point. After the crash
K_f = ½ (I₀ + mr²) w²
sustitute
K_f = ½ (I₀ + mr²) (
w₀)²
Kf = ½
w₀²
we look for the relationship between the kinetic energy
= 

K_f < K₀
we see that the kinetic energy is not constant in the process, this implies that part of the energy is transformed into potential energy during the collision
The type of mass movement that happens very slowly is Creep.
Explanation:
Mass movement, usually known as mass wasting, is that the descent movement of a mass of surface materials, like soil, rock or mud. This mass movement generally happens on hillsides and mountains because of the influence of gravity and may happen terribly slowly or terribly quickly.
At a temperature of 298 K, the Henry's law constant is 0.00130 M/atm for oxygen. The solubility of oxygen in water 1.00 atm would be calculated as follows:
<span>S = (H) (Pgas) = 0.00130 M / atm x 0.21 atm = 0.000273 M
</span>
At 0.890 atm,
<span>S = (H)(Pgas) = 0.00130 M / atm x 0.1869 atm = 0.00024297 M</span>
<span>
If atmospheric pressure would suddenly change from 1.00 atm to 0.890 atm at the same temperature, the amount of oxygen that will be released from 3.30 L of water in an unsealed container would be as follows</span>
<span>
3.30 L x (0.000273 mol / L) = 0.0012012 mol</span>
3.30 L x (0.00024297 mol / L) = 0.001069068 mol
0.0012012 mol - 0.001069068 mol = 0.000132 mol