Answer:
decreased by a factor of 10
Explanation:
pH is defined in such a way that;
pH= −log10(H)
Where H represents the concentration of Hydronium or Hydrogen ions
Given that pH is changed from 1 to 2,
By rearranging the above formula , we get 10−pH = H
- if pH=1,H=10−1=0.1M
- if pH=2,H=10−2=0.01M
Therefore, 0.1/0.01 = 10 and 0.1 > 0.01
Hence, the concentration of hydronium ions in the solution is decreased by a factor of 10
Yes the answer is a , kinetic energy
First, we convert the depth of the water into meters. This is:
60 feet = 18.3 meters
Now, we compute the additional pressure exerted due to the water, which is given by:
Pressure = density * gravitational field strength * height
P = 1000 * 9.81 * 18.3
P = 179.5 kPa
The atmosphere pressure is 101.325 kPa
The pressure of the gas bubbles 60 feet under water will be:
179.5 + 101.325 = 280.825 kPa
The pressure at the surface of the water will be equal to the atmospheric pressure, 101.325 kPa.
Because of this decrease in external pressure as gas bubbles rise, they are seen to expand.
Answer:
pH = - log [2.12 x 10^-3]
what is the log of 2.22 x 10^-3]
Take the opposite of that,
That is the pH, now, just make certain you use the correct significant figures.
Explanation: