Explanation:
Given parameters:
Mass of Neil Armstrong = 160kg
Gravitational pull of earth = 10N/kg
Moon's pull = 17% of the earth's pull
Unknown:
Difference between Armstrong's weight on moon and on earth.
Solution:
To find the weight,
Weight = mass x acceleration due to gravity = mg
Moon's gravitational pull = 17% of the earth's pull = 17% x 10 = 1.7N/kg
Weight on moon = 160 x 1.7 = 272N
Weight on earth = 160 x 10 = 1600N
The difference in weight = 1600 - 272 = 1328N
The weight of Armstrong on earth is 1328N more than on the moon.
Learn more:
Weight and mass brainly.com/question/5956881
#learnwithBrainly
Thermal energy, radiant energy
Inertia, property of a body by virtue of which it opposes any agency that attempts to put it in motion or, if it is moving, to change the magnitude or direction of its velocity. Inertia is a passive property and does not enable a body to do anything except oppose such active agents as forces and torques.
Answer:
C. Chemical energy
Explanation:
The different types of energy listed in this question are:
A) Electrical energy: it is the energy related to the flow of electrical charges (current)
B) Nuclear energy: it is the energy contained in the nuclei of the atoms, and released during nuclear reactions
C) Chemical energy: it is the energy contained in the bonds between molecules, and it is released during chemical reactions
D) Thermal energy: it is the energy associated with the motion of molecules
Photosynthesis is the process that plants use to transform the light energy (coming from the Sun) into chemical energy. In fact, in this process, plants absorb CO2 (from the atmosphere) and solar energy (from the light), and they convert them into sugars (glucose) and oxygen. Therefore, the initial energy coming as solar energy is converted into energy of the bonds of the molecules of glucose (so, chemical energy).
So, the correct option is C).
Answer:
Honestly i think the answer is B
Explanation: