M = 4.79 kg = 4790 g
d = 7.86 g/cm3
density = mass/volume
v = m/d
v = 4790/7.86
v = 609.4 cm3
1 cm3 = 10^-2 dL
v = 609.4 x 0.01 = 6.09 dL
Density is mass over volume, so:
14.3/8.46≈ 1.6903 g/cm^3
Quick answer: Exothermic reactions mean that heat has escaped the system. The answer is A. Heat is released.
<u>Given:</u>
Mass of pure iron (Fe) = 3.4 g
<u>To determine:</u>
Mass of HBr needed to dissolve the above iron
<u>Explanation:</u>
Reaction between HBr and Fe is
Fe + 2HBr → FeBr₂ + H₂
Based on the reaction stoichiometry-
1 mole of Fe reacts with 2 moles of HBr
# moles of Fe = mass of Fe/atomic mass of Fe = 3.4/56 g.mol⁻¹ = 0.0607 moles
Therefore # moles of HBr = 2*0.0607 = 0.1214 moles
Molar mass of HBr = 81 g/mole
Mass of HBr = 0.1214 moles * 81 g/mole = 9.83 g
Ans: Mass of HBR required is 9.83 g
Answer:
Explanation:
Hello!
In this case, since the net ionic equation of a chemical reaction shows up the ionic species that result from the simplification of the spectator ions, which are those at both reactants and products sides, we take into account that aqueous species ionize into ions whereas liquid, solid and gas species remain unionized. In such a way, for the reaction of cesium phosphate and silver nitrate we can write the complete molecular equation:
Whereas the three aqueous salts are ionized in order to write the following complete ionic equation:
In such a way, since the cesium and nitrate ions are the spectator ions because of the aforementioned, the net ionic equation turns out:
Best regards!