Answer: I found this online. Hope it helps you.
Explanation:
This pressure is transmitted throughout the liquid and makes it more difficult for bubbles to form and for boiling to take place. If the pressure is reduced, the liquid requires less energy to change to a gaseous phase, and boiling occurs at a lower temperature.
Answer:
6.66 s will it take for [AB] to reach 1/3 of its initial concentration 1.50 mol/L.
Explanation:
The order of the reaction is 2.
Integrated rate law for second order kinetic is:
Where, is the initial concentration = 1.50 mol/L
is the final concentration = 1/3 of initial concentration = = 0.5 mol/L
Rate constant, k = 0.2 L/mol*s
Applying in the above equation as:-
<u>6.66 s will it take for [AB] to reach 1/3 of its initial concentration 1.50 mol/L.</u>
Latent heat of melting is the energy that a solid absorbs to change its phase as its liquid. During this process, since all energy is used to change the phase, the temperature is constant.
Here the latent energy of melting for 1 g of ice is 80 calories and that 1 g of ice only absorbed 60 calories. hence the phase is not changed because it requires more 20 calories to melt.
Hence 1 g of ice remains as its solid phase (ice).
You can have as many controls as necessary, But they must remain equal at all times in order to get the most accurate results
Answer:
VP (solution) = 171.56 mmHg
Explanation:
Vapor pressure of pure solvent(P°) - Vapor pressure of solution (P') = P° . Xm
Let's replace the data:
173.11 mmHg - P' = 173.11 mmHg . Xm
Let's determine the Xm (mole fraction for solute)
Mole fraction for solute = Moles of solute / Total moles
Total moles = Moles of solute + moles of solvent.
Let's determine the moles
Moles of solvent → 623.4 g / 119.4 g/mol = 5.22 moles
Moles of solute → 9.322 g / 180.1 g/mol = 0.052 moles
Total moles = 0.052 + 5.22 = 5.272 moles
Xm = 0.052 moles / 5.272 moles = 0.009 → 9/1000
173.11 mmHg - P' = 173.11 mmHg . 9/1000
P' = - (173.11 mmHg . 9/1000 - 173.11 mmHg)
P' = 171.56 mmHg