Answer:
(a) attached below
(b)

(c) 
(d)
Ω
(e)
and 
Explanation:
Given data:





(a) Draw the power triangle for each load and for the combined load.
°
°
≅ 

≅ 
The negative sign means that the load 2 is providing reactive power rather than consuming
Then the combined load will be


(b) Determine the power factor of the combined load and state whether lagging or leading.

or in the polar form
°

The relationship between Apparent power S and Current I is

Since there is conjugate of current I therefore, the angle will become negative and hence power factor will be lagging.
(c) Determine the magnitude of the line current from the source.
Current of the combined load can be found by


(d) Δ-connected capacitors are now installed in parallel with the combined load. What value of capacitive reactance is needed in each leg of the A to make the source power factor unity?Give your answer in Ω


Ω
(e) Compute the magnitude of the current in each capacitor and the line current from the source.
Current flowing in the capacitor is

Line current flowing from the source is

Answer:


Explanation:
Given
--- Initial altitude
-- Altitude after 16.5 seconds
--- Acceleration (It is negative because it is an upward movement i.e. against gravity)
Solving (a): Final Speed of the rocket
To do this, we make use of:

The final altitude after 16.5 seconds is represented as:

Substitute the following values:
and 
So, we have:



Collect Like Terms


Make u the subject



Solving (b): The maximum height attained
First, we calculate the time taken to attain the maximum height.
Using:

At the maximum height:
--- The final velocity

So, we have:

Collect Like Terms

Make t the subject


The maximum height is then calculated as:

This gives:





Hence, the maximum height is 1141.07ft
False? i think false yes false