1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
melomori [17]
2 years ago
14

PLZ HELP ASAP With number 10 above

Physics
1 answer:
raketka [301]2 years ago
5 0

Answer:

<em>P = 1500 Watt</em>

Explanation:

<u>Mechanical Work and Power </u>

Mechanical work is the amount of energy transferred by a force.

Being F the magnitude of the force vector and s the distance, the work is calculated as:

W=F.s

Power is the amount of energy transferred or converted per unit of time. In the SI, the unit of power is the watt, equal to one joule per second.

The power can be calculated as:

\displaystyle P=\frac {W}{t}

Where W is the work and t is the time.

The force to be considered is the weight of the mass of m=100 kg, g= 10\ m/s^2:

F = 100 * 10 = 1000 N

The distance is s=3 m, thus the work done by the weight lifter is:

W = 1000 N * 3 m

W = 3000 J

Finally, the power is:

\displaystyle P=\frac {3000}{2}

P = 1500 Watt

You might be interested in
Freight car A with a gross weight of 200,000 lbs is moving along the horizontal track in a switching yard at 4 mi/hr. Freight ca
zhenek [66]

Answer: a) 4.7 mi/hr.  b) 86,500 lbs. mi²/Hr²

Explanation:

As in any collision, under the assumption that no external forces exist during the very small collision time, momentum must be conserved.

If the collision is fully inelastic, both masses continue coupled each other as a single mass, with a single speed.

So, we can write the following:

p₁ = p₂ ⇒m₁.v₁ + m₂.v₂ = (m₁ + m₂). vf

Replacing by the values, and solving for vf, we get:

vf = (200,000 lbs. 4 mi/hr + 100,000 lbs. 6 mi/hr) / 300,000 lbs = 4.7 mi/hr

If the track is horizontal, this means that thre is no change in gravitational potential energy, so any loss of energy must be kinetic energy.

Before the collision, the total kinetic energy of the system was the following:

K₁ = 1/2 (m₁.v₁² + m₂.v₂²) = 3,400,000 lbs. mi² / hr²

After the collision, total kinetic energy is as follows:

K₂ = 1/2 ((m₁ + m₂) vf²) = 3,313,500 lbs. mi²/hr²

So we have an Energy loss, equal to the difference between initial kinetic energy and final kinetic energy, as follows:

DE = K₁ - K₂ = 86,500 lbs. mi² / hr²

This loss is due to the impact, and is represented by the work done by friction forces (internal) during the impact.

8 0
3 years ago
1) A boy drags a wooden crate with a mass of 20 kg, a distance of 12 m, across a rough level floor at a constant speed of 1.5 m/
mojhsa [17]

Answer: a) 49.560 and 21.13 b) i) 50 N, ii) 196 N iii) 196 N iv) 47.685 N

c) i) 594.72 ii) 0 iii) 0 iv) 0

d) 594.72

Explanation: question a)

The force is inclined at an angle of 25° to the horizontal

The horizontal component of force = 50 cos 25° = 49.560 N

The vertical component of force = 50 sin 30°= 21.130N

Question b)

i) according to the question applied force is 50 N

ii) if g = 9.8m/s², w=mg where m = mass of object = 20kg hence weight = 20* 9.8 = 196 N

iii) the normal force is the force the floor exerts on the body as a result of the weight of the object.

Normal reaction R = W = mg, we already deduced that w = mg, hence R = 196 N.

iv) according to newton's laws of motion

F - Fr = ma

F = applied force = horizontal component of force = 49.560 N.

We need to get the acceleration (a) by using Newton laws of motion before we can be able to compute the frictional force..

The body started from rest hence initial velocity u = 0

Final velocity v = 1.5m/s distance covered (s) = 12m

v ² = u² + 2as

But u = 0

v² = 2as

1.5² = 2(a) * 12

2.25 = 24a

a = 2.25/24 = 0.09735m/s²

From F - Fr = ma

49.560 - Fr = 20 * 0.09735

49.560 - Fr = 1.875

Fr = 49.560 - 1.875

Fr = 47.685 N

Question c)

i) The applied force = 49.560 N, distance covered = 12m

Work done = force * distance

Work done = 49.560 * 12

Work done = 594.72 J

ii) the weight of the object does not make the object move a distance, hence work done = 0 ( since distance covered is 0)

iii) the normal force is the same thing as the weight and they did not cover any distance hence work done is zero.

iv) the frictional force does not cover any distance, hence work done is zero.

Question d)

The total work done = work done by applied force + work done by weight + work done by normal reaction + work done by frictional force.

Total work done = 594.72 + 0 + 0 + 0 = 594.72 J

8 0
2 years ago
A bird sits on a high-voltage power line with its feet 3.87 cm apart. The wire is made from aluminum, is 2.11 cm in diameter, an
Svetlanka [38]

Answer:

ΔV=0.484mV

Explanation:

The potential difference across the end of conductor that obeys Ohms law:

ΔV=IR

Where I is current

R is resistance

The resistance of a cylindrical conductor is related to its resistivity p,Length L and cross section area A

R=(pL)/A

Given data

Length L=3.87 cm =0.0387m

Diameter d=2.11 cm =0.0211 m

Current I=165 A

Resistivity of aluminum p=2.65×10⁻⁸ ohms

So

ΔV=IR

=I(\frac{pL}{A})\\ =I(\frac{pL}{\pi r^{2} } )\\=I(\frac{pL}{\pi (d/2)^{2} } )\\=165A((\frac{(2.65*10^{-8})(0.0387m)}{\pi (0.0211m/2)^{2} } ))\\=4.84*10^{-4}V

ΔV=0.484mV  

3 0
2 years ago
What is the peak emf generated by a 0.250 m radius, 500-turn coil is rotated one-fourth of a revolution in 4.17 ms, originally h
zysi [14]

Complete question:

What is the peak emf generated by a 0.250 m radius, 500-turn coil is rotated one-fourth of a revolution in 4.17 ms, originally having its plane perpendicular to a uniform magnetic field 0.425 T. (This is 60 rev/s.)

Answer:

The peak emf generated by the coil is 15.721 kV

Explanation:

Given;

Radius of coil, r = 0.250 m

Number of turns, N = 500-turn

time of revolution, t = 4.17 ms = 4.17 x 10⁻³ s

magnetic field strength, B = 0.425 T

Induced peak emf = NABω

where;

A is the area of the coil

A = πr²

ω is angular velocity

ω = π/2t = (π) /(2 x 4.17 x 10⁻³) = 376.738 rad/s =  60 rev/s

Induced peak emf = NABω

                               = 500 x (π x 0.25²) x 0.425 x 376.738

                               = 15721.16 V

                               = 15.721 kV

Therefore, the peak emf generated by the coil is 15.721 kV

5 0
3 years ago
What is the acceleration of a 600,000 kg freight train, if each of itsthree engines can provide 100,000 n of force?
sergey [27]

The acceleration of a 600,000 kg freight train, if each of its three engines can provide 100,000N of force is 0.167m/s².

<h3>How to calculate acceleration?</h3>

The acceleration of a freight train can be calculated using the following formula:

Force = mass × acceleration

According to this question, a 600,000kg freight train can produce 100,000N of force. The acceleration is as follows:

100,000 = 600,000 × a

100,000 = 600,000a

a = 0.167m/s²

Therefore, the acceleration of a 600,000 kg freight train, if each of its three engines can provide 100,000N of force is 0.167m/s².

Learn more about acceleration at: brainly.com/question/12550364

#SPJ1

6 0
1 year ago
Other questions:
  • Compare and contrast the average kinetic energy of 0.5 L of coffee at 34ÁC,
    5·1 answer
  • Two light waves are initially in phase and have the same wavelength, 470 nm. They enter two different media of identical lengths
    15·1 answer
  • In a free market economy, the decisions made by buyers and sellers push the price of a good or service toward the _____. price c
    12·1 answer
  • Article 5 of the Fundamental Orders of Connecticut is MOST LIKELY related to which idea?
    15·1 answer
  • Which describes a reflected image in a plane mirror
    5·2 answers
  • Which of the following emissions is associated with burning coal? a. sulfur dioxide b. carbon dioxide c. nitrous oxides d. all o
    12·1 answer
  • The buoyant force on a submerged boulder acts upward because _______.
    15·1 answer
  • A 15.0 cm object is 12.0 cm from a convex mirror that has a focal length of -6.0 cm. What is the height of the image produced by
    9·2 answers
  • Which of the following is NOT a characteristic of noble gases?
    7·2 answers
  • A planet's moon travels in an approximately circular orbit of radius 8.6 107 m with a period of 6 h 25 min. Calculate the mass o
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!