They all have the same number of electrons.
The balanced reaction is:
N2 + 3H2 = 2NH3
We are given the amount of the product to be produced.This will be the starting point of our calculations. We use the ideal gas equation to find for the number of moles.
<span>
n = PV / RT = 1.00(.520 L) / (0.08206 atm L/mol K ) 273 K
n= 0.0232 mol NH3
</span>0.0232 mol NH3 (1 mol N2 / 2 mol NH3) = 0.0116 mol N2
<span>Therefore, the correct answer is A.</span>
Answer:
There are 0,011 moles of hydrogen gas.
Explanation:
We use the ideal gas formula, with the constant R = 0.082 l atm / K mol. The STP conditions are : 1 atm pressure and 273 K temperature. Solve for the formula, n (number of moles):
PV=nRT ---> n= (PV)/(RT)
n= (1 atm x 0,25 L)/ (0,082 l atm/ K mol x 273 K)
<em>n= 0,011 mol</em>
Using the law of dilution :
Mi x Vi = Mf x Vf
2.00 x Vi = 0.15 x 100.0
2.00 x Vi = 15
Vi = 15 / 2.00
Vi = 7.5 mL
hope this helps!
Explanation:
Knowing the number of valence electrons in one of the alien elements helps in identifying it because the number of valence electrons can help categorize the alien element. Similar elements have the same valence electrons and knowing the category of the element can help further analyze the element.