Answer:
Mg(s) + Sn²⁺(aq) ⇄ Mg²⁺(aq) + Sn(s)
Explanation:
Let's consider the following molecular equation.
Mg(s) + SnSO₄(aq) ⇄ MgSO₄(aq) + Sn(s)
The full ionic equation includes al the ions and the species that do not dissociate in water.
Mg(s) + Sn²⁺(aq) + SO₄²⁻(aq) ⇄ Mg²⁺(aq) + SO₄²⁻(aq) + Sn(s)
The net ionic equation includes only the ions that participate in the reaction (not spectator ions) and the species that do not dissociate in water.
Mg(s) + Sn²⁺(aq) ⇄ Mg²⁺(aq) + Sn(s)
Answer:
root-mean-sqaure = 2.77 m/s
average = 2.72 m/s
The root-mean-square is always the largest because it takes account of the variance of the spread of the data. The increase is related to the fact that the data varies to sample.
Explanation:
The rootmean-square (R) is the square root of the squares of the valeus divided by the number of the datas.


R = √(46.03)/6
R = 2.77 m/s
The average speed is the sum of the speeds divided by the number of datas:

A = 16.3/6
A = 2.72 m/s
Answer:
Potassium is an element, with the symbol K
Explanation:
An element is something that cannot be broken down any further, for example, calcium, its Ca.
A compound is when you bond two or more elements. Compounds can be broken down into its original elements, for example, H₂O, it contains two atoms of hydrogen and one atom of oxygen (both hydrogen and oxygen are elements).
Pressure, volume, temperature, # moles Pressure, volume and temperature, and moles of gas
Hope that helps!!!!
Answer:
The volume of the gas is determined, which will allow you to calculate the temperature.
Explanation:
According to Charles law; the volume of a given mass of an ideal gas is directly proportional to its temperature at constant pressure.
This implies that, when the volume of an ideal gas is measured at constant pressure, the temperature of the ideal gas can be calculated from it according to Charles law.
Hence in the Ideal Gas Law lab, the temperature of an ideal gas is measured by determining the volume of the ideal gas.