Answer:

Explanation:
From the question we are told that
Weight of fireman 
Pole distance 
Final speed is 
Generally the equation for velocity is mathematically represented as

Therefore Acceleration a
Generally the equation for Frictional force
is mathematically given as



Therefore

Refer to the diagram shown below.
g = 9.8 m/s², and air resistance is ignored.
For mass m₁:
The normal reaction is m₁g.
The resisting force is R₁ = μm₁g.
For mass m₂:
The normal reaction is m₂g.
The resisting force is R₂ = μm₂g.
Let a = the acceleration of the system.
Then
(m₁ + m₂)a = F - (R₁ + R₂)
(14+26 kg)*(a m/s²) = (65 N) - 0.098*(9.8 m/s²)*(14+26 kg)
40a = 65 - 38.416 = 26.584
a = 0.6646 m/s²
Answer: 0.665 m/s² (nearest thousandth)
As the speed increases and the pressure decreases
So, the frequency of that light approximately 
<h3>Introduction</h3>
Hi ! Here I will help you to discuss the relationship between frequency and wavelength, with the velocity constant of electromagnetic waves in a vacuum. We all know that regardless of the type of electromagnetic wave, it will have the same velocity as the speed of light (light is part of electromagnetic wave too), which is 300,000 km/s or
m/s. As a result of this constant property, <u>the shorter the wavelength, the greater the value of the electromagnetic wave frequency</u>. This relationship can also be expressed in this equation:

With the following condition :
- c = the constant of the speed of light in a vacuum ≈
m/s
= wavelength (m)- f = electromagnetic wave frequency (Hz)
<h3>Problem Solving</h3>
We know that :
- c = the constant of the speed of light in a vacuum ≈
m/s
= wavelength =
m.
What was asked :
- f = electromagnetic wave frequency = ... Hz
Step by step :






<h3>Conclusion :</h3>
So, the frequency of that light approximately 
<h3>See More :</h3>
To know if their research is correct or matches their hypothesis.