Answer:
45000 K .
Explanation:
Given :
A liter of a gas weigh 2 gram at 300 kelvin temperature and 1 atm pressure
We need to find the temperature in which 1 litre of the same gas weigh 1 gram
in pressure 75 atm.
We know, by ideal gas equation :

Here , n is no of moles , 
Putting initial and final values and dividing them :


Hence , this is the required solution.
Hi there!
Your answer would be
A and C.
Hope this helped, please give brainliest!
<span>22.5 newtons.
First, let's determine how much energy the stone had at the moment of impact. Kinetic energy is expressed as:
E = 0.5mv^2
where
E = Energy
m = mass
v = velocity
Substituting known values and solving gives:
E = 0.5 3.06 kg (7 m/s)^2
E = 1.53 kg 49 m^2/s^2
E = 74.97 kg*m^2/s^2
Now ignoring air resistance, how much energy should the rock have had?
We have a 3.06 kg moving over a distance of 10.0 m under a force of 9.8 m/s^2. So
3.06 kg * 10.0 m * 9.8 m/s^2 = 299.88 kg*m^2/s^2
So without air friction, we would have had 299.88 Joules of energy, but due to air friction we only have 74.97 Joules. The loss of energy is
299.88 J - 74.97 J = 224.91 J
So we can claim that 224.91 Joules of work was performed over a distance of 10 meters. So let's do the division.
224.91 J / 10 m
= 224.91 kg*m^2/s^2 / 10 m
= 22.491 kg*m/s^2
= 22.491 N
Rounding to 3 significant figures gives an average force of 22.5 newtons.</span>
<h2>34.9×46×809</h2><h3>=1605.4×809 </h3><h3>=1298768.6</h3>
please mark this answer as brainlist
Answer:
The charge on the bead is 
Explanation:
From the question we are told that
The mass of the bead is 
The magnitude of the electric field is 
The acceleration of the bead is 
Generally, the electric force on the bead is mathematically represented as

Where q is the charge on the bead
Now the gravitational force opposing the upward movement of the bead is mathematically represented as

Generally the net force on the bead is mathematically represented as

=> 
Now substituting values

