<h3><u>Answer;</u></h3>
Large mirrors are easier to build than large lenses.
<h3><u>Explanation;</u></h3>
- <em><u>Reflector telescopes have a number of advantages as compared to refracting telescopes and other types of telescopes. </u></em>
- <em><u>Reflector telescopes do not suffer from chromatic aberration because all wavelengths will reflect off the mirror in the same way. The support for the objective mirror is all along the back side so they can be made very large.</u></em>
- Additionally, reflector telescopes are cheaper to make than refractors of the same size. Also since in reflector telescopes light is reflecting off the objective, rather than passing through it, only one side of the reflector telescope's objective needs to be perfect.
Answer:

Upward
Explanation:
We are given that
Mass of scarp paper,
1mg=
Distance,d =8 mm=
Magnitude of electric force =
Where 
Substitute the values


Gravitational force act in downward direction.
The electric force acts in opposite direction and magnitude of electric force is equal to gravitational force.
Hence, the direction of electric force is upward.
Thermal energy that flows between objects due to a difference in temperature is heat.
To solve this problem it is necessary to apply the concepts related to the Stefan-Boltzman law that is responsible for calculating radioactive energy.
Mathematically this expression can be given as

Where
A = Surface area of the Object
Stefan-Boltzmann constant
e = Emissivity
T = Temperature (Kelvin)
Our values are given as





Replacing at our equation and solving to find the temperature 1 we have,




Therefore the the temperature of the coldest room in which this person could stand and not experience a drop in body temperature is 12°C
The answer is B.
This is because you add up all of the times (1.44s+1.70s+1.58s+1.76s) and you get 6.48 then you divide 6.48 by 4 to get the average of the times. Now you get the distance (200m) and because speed=distance/time you divide 200m/1.62s to get 123m/s. I hope this made sense :)