Answer:
I = 215.76 A
Explanation:
The direction of magnetic field produced by conductor 1 on the location of conductor 2 is towards left. Based on Right Hand Rule -1 and taking figure 21.3 as reference, the direction of force Fm due to magnetic field produced at C_2 is shown above. The force Fm balances the weight of conductor 2.
Fm = u_o*I^2*L/2*π*d
where I is the current in each rod, d = 0.0082 m is the distance 27rId
between each, L = 0.85 m is the length of each rod.
Fm = 4π*10^-7*I^2*1.1/2*π*0.0083
The mass of each rod is m = 0.0276 kg
F_m = mg
4π*10^-7*I^2*1.1/2*π*0.0083=0.0276*9.8
I = 215.76 A
note:
mathematical calculation maybe wrong or having little bit error but the method is perfectly fine
Answer:
a) K = 0.63 J, b) h = 0.153 m
Explanation:
a) In this exercise we have a physical pendulum since the rod is a material object, the angular velocity is
w² =
where d is the distance from the pivot point to the center of mass and I is the moment of inertia.
The rod is a homogeneous body so its center of mass is at the geometric center of the rod.
d = L / 2
the moment of inertia of the rod is the moment of a rod supported at one end
I = ⅓ m L²
we substitute
w =
w =
w =
w = 4.427 rad / s
an oscillatory system is described by the expression
θ = θ₀ cos (wt + Φ)
the angular velocity is
w = dθ /dt
w = - θ₀ w sin (wt + Ф)
In this exercise, the kinetic energy is requested in the lowest position, in this position the energy is maximum. For this expression to be maximum, the sine function must be equal to ±1
In the exercise it is indicated that at the lowest point the angular velocity is
w = 4.0 rad / s
the kinetic energy is
K = ½ I w²
K = ½ (⅓ m L²) w²
K = 1/6 m L² w²
K = 1/6 0.42 0.75² 4.0²
K = 0.63 J
b) for this part let's use conservation of energy
starting point. Lowest point
Em₀ = K = ½ I w²
final point. Highest point
Em_f = U = m g h
energy is conserved
Em₀ = Em_f
½ I w² = m g h
½ (⅓ m L²) w² = m g h
h = 1/6 L² w² / g
h = 1/6 0.75² 4.0² / 9.8
h = 0.153 m
Answer:
Energy of Photon = 4.091 MeV
Explanation:
From the conservation of energy principle, we know that total energy of the system must remain conserved. So, the energy or particles before collision must be equal to the energy of photons after collision.
K.E OF electron + Rest Energy of electron + K.E of positron + Rest Energy of positron = 2(Energy of Photon)
where,
K.E OF electron = 3.58 MeV
Rest Energy of electron = 0.511 MeV
Rest Energy of positron = 0.511 MeV
K.E OF positron = 3.58 MeV
Energy of Photon = ?
Therefore,
3.58 MeV + 0.511 MeV + 3.58 MeV + 0.511 MeV = 2(Energy of Photon)
Energy of Photon = 8.182 MeV/2
<u>Energy of Photon = 4.091 MeV</u>
Answer:
<h3>1.43m/s²</h3>
Explanation:
According to newtons second law.
F = mass * acceleration
If the doll has a mass of 0.2 kg, and the robot has a mass of 0.5 kg, the resulting mass will be 0.7kg
Force applied = 1N
acceleration = Force/mass
Substitute the values and get acceleration
acceleration = 1/0.7
acceleration = 1.43m/s²
Hence the magnitude of the acceleration of the robot is 1.43m/s²